Total
1093 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-49619 | 1 Linux | 1 Linux Kernel | 2025-03-26 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: sfp: fix memory leak in sfp_probe() sfp_probe() allocates a memory chunk from sfp with sfp_alloc(). When devm_add_action() fails, sfp is not freed, which leads to a memory leak. We should use devm_add_action_or_reset() instead of devm_add_action(). | ||||
CVE-2022-49502 | 1 Linux | 1 Linux Kernel | 2025-03-26 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: media: rga: fix possible memory leak in rga_probe rga->m2m_dev needs to be freed when rga_probe fails. | ||||
CVE-2021-47654 | 1 Linux | 1 Linux Kernel | 2025-03-26 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: samples/landlock: Fix path_list memory leak Clang static analysis reports this error sandboxer.c:134:8: warning: Potential leak of memory pointed to by 'path_list' ret = 0; ^ path_list is allocated in parse_path() but never freed. | ||||
CVE-2024-26462 | 3 Mit, Netapp, Redhat | 12 Kerberos 5, Active Iq Unified Manager, Cloud Volumes Ontap Mediator and 9 more | 2025-03-25 | 5.5 Medium |
Kerberos 5 (aka krb5) 1.21.2 contains a memory leak vulnerability in /krb5/src/kdc/ndr.c. | ||||
CVE-2023-0615 | 1 Linux | 1 Linux Kernel | 2025-03-25 | 5.5 Medium |
A memory leak flaw and potential divide by zero and Integer overflow was found in the Linux kernel V4L2 and vivid test code functionality. This issue occurs when a user triggers ioctls, such as VIDIOC_S_DV_TIMINGS ioctl. This could allow a local user to crash the system if vivid test code enabled. | ||||
CVE-2024-1394 | 1 Redhat | 23 Ansible Automation Platform, Ansible Automation Platform Developer, Ansible Automation Platform Inside and 20 more | 2025-03-25 | 7.5 High |
A memory leak flaw was found in Golang in the RSA encrypting/decrypting code, which might lead to a resource exhaustion vulnerability using attacker-controlled inputs. The memory leak happens in github.com/golang-fips/openssl/openssl/rsa.go#L113. The objects leaked are pkey and ctx. That function uses named return parameters to free pkey and ctx if there is an error initializing the context or setting the different properties. All return statements related to error cases follow the "return nil, nil, fail(...)" pattern, meaning that pkey and ctx will be nil inside the deferred function that should free them. | ||||
CVE-2024-58063 | 1 Linux | 1 Linux Kernel | 2025-03-25 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: rtlwifi: fix memory leaks and invalid access at probe error path Deinitialize at reverse order when probe fails. When init_sw_vars fails, rtl_deinit_core should not be called, specially now that it destroys the rtl_wq workqueue. And call rtl_pci_deinit and deinit_sw_vars, otherwise, memory will be leaked. Remove pci_set_drvdata call as it will already be cleaned up by the core driver code and could lead to memory leaks too. cf. commit 8d450935ae7f ("wireless: rtlwifi: remove unnecessary pci_set_drvdata()") and commit 3d86b93064c7 ("rtlwifi: Fix PCI probe error path orphaned memory"). | ||||
CVE-2022-48764 | 1 Linux | 1 Linux Kernel | 2025-03-24 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: KVM: x86: Free kvm_cpuid_entry2 array on post-KVM_RUN KVM_SET_CPUID{,2} Free the "struct kvm_cpuid_entry2" array on successful post-KVM_RUN KVM_SET_CPUID{,2} to fix a memory leak, the callers of kvm_set_cpuid() free the array only on failure. BUG: memory leak unreferenced object 0xffff88810963a800 (size 2048): comm "syz-executor025", pid 3610, jiffies 4294944928 (age 8.080s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 0d 00 00 00 ................ 47 65 6e 75 6e 74 65 6c 69 6e 65 49 00 00 00 00 GenuntelineI.... backtrace: [<ffffffff814948ee>] kmalloc_node include/linux/slab.h:604 [inline] [<ffffffff814948ee>] kvmalloc_node+0x3e/0x100 mm/util.c:580 [<ffffffff814950f2>] kvmalloc include/linux/slab.h:732 [inline] [<ffffffff814950f2>] vmemdup_user+0x22/0x100 mm/util.c:199 [<ffffffff8109f5ff>] kvm_vcpu_ioctl_set_cpuid2+0x8f/0xf0 arch/x86/kvm/cpuid.c:423 [<ffffffff810711b9>] kvm_arch_vcpu_ioctl+0xb99/0x1e60 arch/x86/kvm/x86.c:5251 [<ffffffff8103e92d>] kvm_vcpu_ioctl+0x4ad/0x950 arch/x86/kvm/../../../virt/kvm/kvm_main.c:4066 [<ffffffff815afacc>] vfs_ioctl fs/ioctl.c:51 [inline] [<ffffffff815afacc>] __do_sys_ioctl fs/ioctl.c:874 [inline] [<ffffffff815afacc>] __se_sys_ioctl fs/ioctl.c:860 [inline] [<ffffffff815afacc>] __x64_sys_ioctl+0xfc/0x140 fs/ioctl.c:860 [<ffffffff844a3335>] do_syscall_x64 arch/x86/entry/common.c:50 [inline] [<ffffffff844a3335>] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 [<ffffffff84600068>] entry_SYSCALL_64_after_hwframe+0x44/0xae | ||||
CVE-2024-39490 | 1 Linux | 1 Linux Kernel | 2025-03-24 | 6.2 Medium |
In the Linux kernel, the following vulnerability has been resolved: ipv6: sr: fix missing sk_buff release in seg6_input_core The seg6_input() function is responsible for adding the SRH into a packet, delegating the operation to the seg6_input_core(). This function uses the skb_cow_head() to ensure that there is sufficient headroom in the sk_buff for accommodating the link-layer header. In the event that the skb_cow_header() function fails, the seg6_input_core() catches the error but it does not release the sk_buff, which will result in a memory leak. This issue was introduced in commit af3b5158b89d ("ipv6: sr: fix BUG due to headroom too small after SRH push") and persists even after commit 7a3f5b0de364 ("netfilter: add netfilter hooks to SRv6 data plane"), where the entire seg6_input() code was refactored to deal with netfilter hooks. The proposed patch addresses the identified memory leak by requiring the seg6_input_core() function to release the sk_buff in the event that skb_cow_head() fails. | ||||
CVE-2025-21792 | 2025-03-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: ax25: Fix refcount leak caused by setting SO_BINDTODEVICE sockopt If an AX25 device is bound to a socket by setting the SO_BINDTODEVICE socket option, a refcount leak will occur in ax25_release(). Commit 9fd75b66b8f6 ("ax25: Fix refcount leaks caused by ax25_cb_del()") added decrement of device refcounts in ax25_release(). In order for that to work correctly the refcounts must already be incremented when the device is bound to the socket. An AX25 device can be bound to a socket by either calling ax25_bind() or setting SO_BINDTODEVICE socket option. In both cases the refcounts should be incremented, but in fact it is done only in ax25_bind(). This bug leads to the following issue reported by Syzkaller: ================================================================ refcount_t: decrement hit 0; leaking memory. WARNING: CPU: 1 PID: 5932 at lib/refcount.c:31 refcount_warn_saturate+0x1ed/0x210 lib/refcount.c:31 Modules linked in: CPU: 1 UID: 0 PID: 5932 Comm: syz-executor424 Not tainted 6.13.0-rc4-syzkaller-00110-g4099a71718b0 #0 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014 RIP: 0010:refcount_warn_saturate+0x1ed/0x210 lib/refcount.c:31 Call Trace: <TASK> __refcount_dec include/linux/refcount.h:336 [inline] refcount_dec include/linux/refcount.h:351 [inline] ref_tracker_free+0x710/0x820 lib/ref_tracker.c:236 netdev_tracker_free include/linux/netdevice.h:4156 [inline] netdev_put include/linux/netdevice.h:4173 [inline] netdev_put include/linux/netdevice.h:4169 [inline] ax25_release+0x33f/0xa10 net/ax25/af_ax25.c:1069 __sock_release+0xb0/0x270 net/socket.c:640 sock_close+0x1c/0x30 net/socket.c:1408 ... do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x77/0x7f ... </TASK> ================================================================ Fix the implementation of ax25_setsockopt() by adding increment of refcounts for the new device bound, and decrement of refcounts for the old unbound device. | ||||
CVE-2025-21788 | 2025-03-24 | 5.5 Medium | ||
In the Linux kernel, the following vulnerability has been resolved: net: ethernet: ti: am65-cpsw: fix memleak in certain XDP cases If the XDP program doesn't result in XDP_PASS then we leak the memory allocated by am65_cpsw_build_skb(). It is pointless to allocate SKB memory before running the XDP program as we would be wasting CPU cycles for cases other than XDP_PASS. Move the SKB allocation after evaluating the XDP program result. This fixes the memleak. A performance boost is seen for XDP_DROP test. XDP_DROP test: Before: 460256 rx/s 0 err/s After: 784130 rx/s 0 err/s | ||||
CVE-2025-21770 | 1 Linux | 1 Linux Kernel | 2025-03-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: iommu: Fix potential memory leak in iopf_queue_remove_device() The iopf_queue_remove_device() helper removes a device from the per-iommu iopf queue when PRI is disabled on the device. It responds to all outstanding iopf's with an IOMMU_PAGE_RESP_INVALID code and detaches the device from the queue. However, it fails to release the group structure that represents a group of iopf's awaiting for a response after responding to the hardware. This can cause a memory leak if iopf_queue_remove_device() is called with pending iopf's. Fix it by calling iopf_free_group() after the iopf group is responded. | ||||
CVE-2025-21737 | 1 Linux | 1 Linux Kernel | 2025-03-24 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ceph: fix memory leak in ceph_mds_auth_match() We now free the temporary target path substring allocation on every possible branch, instead of omitting the default branch. In some cases, a memory leak occured, which could rapidly crash the system (depending on how many file accesses were attempted). This was detected in production because it caused a continuous memory growth, eventually triggering kernel OOM and completely hard-locking the kernel. Relevant kmemleak stacktrace: unreferenced object 0xffff888131e69900 (size 128): comm "git", pid 66104, jiffies 4295435999 hex dump (first 32 bytes): 76 6f 6c 75 6d 65 73 2f 63 6f 6e 74 61 69 6e 65 volumes/containe 72 73 2f 67 69 74 65 61 2f 67 69 74 65 61 2f 67 rs/gitea/gitea/g backtrace (crc 2f3bb450): [<ffffffffaa68fb49>] __kmalloc_noprof+0x359/0x510 [<ffffffffc32bf1df>] ceph_mds_check_access+0x5bf/0x14e0 [ceph] [<ffffffffc3235722>] ceph_open+0x312/0xd80 [ceph] [<ffffffffaa7dd786>] do_dentry_open+0x456/0x1120 [<ffffffffaa7e3729>] vfs_open+0x79/0x360 [<ffffffffaa832875>] path_openat+0x1de5/0x4390 [<ffffffffaa834fcc>] do_filp_open+0x19c/0x3c0 [<ffffffffaa7e44a1>] do_sys_openat2+0x141/0x180 [<ffffffffaa7e4945>] __x64_sys_open+0xe5/0x1a0 [<ffffffffac2cc2f7>] do_syscall_64+0xb7/0x210 [<ffffffffac400130>] entry_SYSCALL_64_after_hwframe+0x77/0x7f It can be triggered by mouting a subdirectory of a CephFS filesystem, and then trying to access files on this subdirectory with an auth token using a path-scoped capability: $ ceph auth get client.services [client.services] key = REDACTED caps mds = "allow rw fsname=cephfs path=/volumes/" caps mon = "allow r fsname=cephfs" caps osd = "allow rw tag cephfs data=cephfs" $ cat /proc/self/mounts services@[REDACTED].cephfs=/volumes/containers /ceph/containers ceph rw,noatime,name=services,secret=<hidden>,ms_mode=prefer-crc,mount_timeout=300,acl,mon_addr=[REDACTED]:3300,recover_session=clean 0 0 $ seq 1 1000000 | xargs -P32 --replace={} touch /ceph/containers/file-{} && \ seq 1 1000000 | xargs -P32 --replace={} cat /ceph/containers/file-{} [ idryomov: combine if statements, rename rc to path_matched and make it a bool, formatting ] | ||||
CVE-2024-58000 | 2025-03-24 | 7.1 High | ||
In the Linux kernel, the following vulnerability has been resolved: io_uring: prevent reg-wait speculations With *ENTER_EXT_ARG_REG instead of passing a user pointer with arguments for the waiting loop the user can specify an offset into a pre-mapped region of memory, in which case the [offset, offset + sizeof(io_uring_reg_wait)) will be intepreted as the argument. As we address a kernel array using a user given index, it'd be a subject to speculation type of exploits. Use array_index_nospec() to prevent that. Make sure to pass not the full region size but truncate by the maximum offset allowed considering the structure size. | ||||
CVE-2009-0581 | 5 Gimp, Littlecms, Mozilla and 2 more | 5 Gimp, Little Cms, Firefox and 2 more | 2025-03-21 | N/A |
Memory leak in LittleCMS (aka lcms or liblcms) before 1.18beta2, as used in Firefox 3.1beta, OpenJDK, and GIMP, allows context-dependent attackers to cause a denial of service (memory consumption and application crash) via a crafted image file. | ||||
CVE-2024-26896 | 1 Linux | 1 Linux Kernel | 2025-03-21 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: wfx: fix memory leak when starting AP Kmemleak reported this error: unreferenced object 0xd73d1180 (size 184): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.245s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 1e 00 01 00 00 00 00 00 ................ backtrace: [<5ca11420>] kmem_cache_alloc+0x20c/0x5ac [<127bdd74>] __alloc_skb+0x144/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 [<69954f45>] __sys_sendmsg+0x64/0xa8 unreferenced object 0xce087000 (size 1024): comm "wpa_supplicant", pid 1559, jiffies 13006305 (age 964.246s) hex dump (first 32 bytes): 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ 10 00 07 40 00 00 00 00 00 00 00 00 00 00 00 00 ...@............ backtrace: [<9a993714>] __kmalloc_track_caller+0x230/0x600 [<f83ea192>] kmalloc_reserve.constprop.0+0x30/0x74 [<a2c61343>] __alloc_skb+0xa0/0x170 [<fb8a5e38>] __netdev_alloc_skb+0x50/0x180 [<0f9fa1d5>] __ieee80211_beacon_get+0x290/0x4d4 [mac80211] [<7accd02d>] ieee80211_beacon_get_tim+0x54/0x18c [mac80211] [<41e25cc3>] wfx_start_ap+0xc8/0x234 [wfx] [<93a70356>] ieee80211_start_ap+0x404/0x6b4 [mac80211] [<a4a661cd>] nl80211_start_ap+0x76c/0x9e0 [cfg80211] [<47bd8b68>] genl_rcv_msg+0x198/0x378 [<453ef796>] netlink_rcv_skb+0xd0/0x130 [<6b7c977a>] genl_rcv+0x34/0x44 [<66b2d04d>] netlink_unicast+0x1b4/0x258 [<f965b9b6>] netlink_sendmsg+0x1e8/0x428 [<aadb8231>] ____sys_sendmsg+0x1e0/0x274 [<d2b5212d>] ___sys_sendmsg+0x80/0xb4 However, since the kernel is build optimized, it seems the stack is not accurate. It appears the issue is related to wfx_set_mfp_ap(). The issue is obvious in this function: memory allocated by ieee80211_beacon_get() is never released. Fixing this leak makes kmemleak happy. | ||||
CVE-2024-26894 | 3 Debian, Linux, Redhat | 4 Debian Linux, Linux Kernel, Enterprise Linux and 1 more | 2025-03-21 | 6 Medium |
In the Linux kernel, the following vulnerability has been resolved: ACPI: processor_idle: Fix memory leak in acpi_processor_power_exit() After unregistering the CPU idle device, the memory associated with it is not freed, leading to a memory leak: unreferenced object 0xffff896282f6c000 (size 1024): comm "swapper/0", pid 1, jiffies 4294893170 hex dump (first 32 bytes): 00 00 00 00 0b 00 00 00 00 00 00 00 00 00 00 00 ................ 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ backtrace (crc 8836a742): [<ffffffff993495ed>] kmalloc_trace+0x29d/0x340 [<ffffffff9972f3b3>] acpi_processor_power_init+0xf3/0x1c0 [<ffffffff9972d263>] __acpi_processor_start+0xd3/0xf0 [<ffffffff9972d2bc>] acpi_processor_start+0x2c/0x50 [<ffffffff99805872>] really_probe+0xe2/0x480 [<ffffffff99805c98>] __driver_probe_device+0x78/0x160 [<ffffffff99805daf>] driver_probe_device+0x1f/0x90 [<ffffffff9980601e>] __driver_attach+0xce/0x1c0 [<ffffffff99803170>] bus_for_each_dev+0x70/0xc0 [<ffffffff99804822>] bus_add_driver+0x112/0x210 [<ffffffff99807245>] driver_register+0x55/0x100 [<ffffffff9aee4acb>] acpi_processor_driver_init+0x3b/0xc0 [<ffffffff990012d1>] do_one_initcall+0x41/0x300 [<ffffffff9ae7c4b0>] kernel_init_freeable+0x320/0x470 [<ffffffff99b231f6>] kernel_init+0x16/0x1b0 [<ffffffff99042e6d>] ret_from_fork+0x2d/0x50 Fix this by freeing the CPU idle device after unregistering it. | ||||
CVE-2022-48650 | 1 Linux | 1 Linux Kernel | 2025-03-20 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: scsi: qla2xxx: Fix memory leak in __qlt_24xx_handle_abts() Commit 8f394da36a36 ("scsi: qla2xxx: Drop TARGET_SCF_LOOKUP_LUN_FROM_TAG") made the __qlt_24xx_handle_abts() function return early if tcm_qla2xxx_find_cmd_by_tag() didn't find a command, but it missed to clean up the allocated memory for the management command. | ||||
CVE-2023-1074 | 2 Linux, Redhat | 4 Linux Kernel, Enterprise Linux, Rhel Eus and 1 more | 2025-03-19 | 5.5 Medium |
A memory leak flaw was found in the Linux kernel's Stream Control Transmission Protocol. This issue may occur when a user starts a malicious networking service and someone connects to this service. This could allow a local user to starve resources, causing a denial of service. | ||||
CVE-2021-47075 | 1 Linux | 1 Linux Kernel | 2025-03-19 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: nvmet: fix memory leak in nvmet_alloc_ctrl() When creating ctrl in nvmet_alloc_ctrl(), if the cntlid_min is larger than cntlid_max of the subsystem, and jumps to the "out_free_changed_ns_list" label, but the ctrl->sqs lack of be freed. Fix this by jumping to the "out_free_sqs" label. |