Total
3124 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2018-9412 | 1 Google | 1 Android | 2025-03-19 | 5.5 Medium |
In removeUnsynchronization of ID3.cpp there is a possible resource exhaustion due to improper input validation. This could lead to denial of service with no additional execution privileges needed. User interaction is needed for exploitation. | ||||
CVE-2024-5652 | 1 Docker | 1 Desktop | 2025-03-19 | 6.1 Medium |
In Docker Desktop on Windows before v4.31.0 allows a user in the docker-users group to cause a Windows Denial-of-Service through the exec-path Docker daemon config option in Windows containers mode. | ||||
CVE-2024-42397 | 1 Hp | 1 Instantos | 2025-03-19 | 5.3 Medium |
Multiple unauthenticated Denial-of-Service (DoS) vulnerabilities exist in the AP Certificate Management daemon accessed via the PAPI protocol. Successful exploitation of these vulnerabilities results in the ability to interrupt the normal operation of the affected Access Point. | ||||
CVE-2023-2650 | 3 Debian, Openssl, Redhat | 5 Debian Linux, Openssl, Enterprise Linux and 2 more | 2025-03-19 | 6.5 Medium |
Issue summary: Processing some specially crafted ASN.1 object identifiers or data containing them may be very slow. Impact summary: Applications that use OBJ_obj2txt() directly, or use any of the OpenSSL subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS with no message size limit may experience notable to very long delays when processing those messages, which may lead to a Denial of Service. An OBJECT IDENTIFIER is composed of a series of numbers - sub-identifiers - most of which have no size limit. OBJ_obj2txt() may be used to translate an ASN.1 OBJECT IDENTIFIER given in DER encoding form (using the OpenSSL type ASN1_OBJECT) to its canonical numeric text form, which are the sub-identifiers of the OBJECT IDENTIFIER in decimal form, separated by periods. When one of the sub-identifiers in the OBJECT IDENTIFIER is very large (these are sizes that are seen as absurdly large, taking up tens or hundreds of KiBs), the translation to a decimal number in text may take a very long time. The time complexity is O(n^2) with 'n' being the size of the sub-identifiers in bytes (*). With OpenSSL 3.0, support to fetch cryptographic algorithms using names / identifiers in string form was introduced. This includes using OBJECT IDENTIFIERs in canonical numeric text form as identifiers for fetching algorithms. Such OBJECT IDENTIFIERs may be received through the ASN.1 structure AlgorithmIdentifier, which is commonly used in multiple protocols to specify what cryptographic algorithm should be used to sign or verify, encrypt or decrypt, or digest passed data. Applications that call OBJ_obj2txt() directly with untrusted data are affected, with any version of OpenSSL. If the use is for the mere purpose of display, the severity is considered low. In OpenSSL 3.0 and newer, this affects the subsystems OCSP, PKCS7/SMIME, CMS, CMP/CRMF or TS. It also impacts anything that processes X.509 certificates, including simple things like verifying its signature. The impact on TLS is relatively low, because all versions of OpenSSL have a 100KiB limit on the peer's certificate chain. Additionally, this only impacts clients, or servers that have explicitly enabled client authentication. In OpenSSL 1.1.1 and 1.0.2, this only affects displaying diverse objects, such as X.509 certificates. This is assumed to not happen in such a way that it would cause a Denial of Service, so these versions are considered not affected by this issue in such a way that it would be cause for concern, and the severity is therefore considered low. | ||||
CVE-2021-47023 | 1 Linux | 1 Linux Kernel | 2025-03-19 | 8.2 High |
In the Linux kernel, the following vulnerability has been resolved: net: marvell: prestera: fix port event handling on init For some reason there might be a crash during ports creation if port events are handling at the same time because fw may send initial port event with down state. The crash points to cancel_delayed_work() which is called when port went is down. Currently I did not find out the real cause of the issue, so fixed it by cancel port stats work only if previous port's state was up & runnig. The following is the crash which can be triggered: [ 28.311104] Unable to handle kernel paging request at virtual address 000071775f776600 [ 28.319097] Mem abort info: [ 28.321914] ESR = 0x96000004 [ 28.324996] EC = 0x25: DABT (current EL), IL = 32 bits [ 28.330350] SET = 0, FnV = 0 [ 28.333430] EA = 0, S1PTW = 0 [ 28.336597] Data abort info: [ 28.339499] ISV = 0, ISS = 0x00000004 [ 28.343362] CM = 0, WnR = 0 [ 28.346354] user pgtable: 4k pages, 48-bit VAs, pgdp=0000000100bf7000 [ 28.352842] [000071775f776600] pgd=0000000000000000, p4d=0000000000000000 [ 28.359695] Internal error: Oops: 96000004 [#1] PREEMPT SMP [ 28.365310] Modules linked in: prestera_pci(+) prestera uio_pdrv_genirq [ 28.372005] CPU: 0 PID: 1291 Comm: kworker/0:1H Not tainted 5.11.0-rc4 #1 [ 28.378846] Hardware name: DNI AmazonGo1 A7040 board (DT) [ 28.384283] Workqueue: prestera_fw_wq prestera_fw_evt_work_fn [prestera_pci] [ 28.391413] pstate: 60000085 (nZCv daIf -PAN -UAO -TCO BTYPE=--) [ 28.397468] pc : get_work_pool+0x48/0x60 [ 28.401442] lr : try_to_grab_pending+0x6c/0x1b0 [ 28.406018] sp : ffff80001391bc60 [ 28.409358] x29: ffff80001391bc60 x28: 0000000000000000 [ 28.414725] x27: ffff000104fc8b40 x26: ffff80001127de88 [ 28.420089] x25: 0000000000000000 x24: ffff000106119760 [ 28.425452] x23: ffff00010775dd60 x22: ffff00010567e000 [ 28.430814] x21: 0000000000000000 x20: ffff80001391bcb0 [ 28.436175] x19: ffff00010775deb8 x18: 00000000000000c0 [ 28.441537] x17: 0000000000000000 x16: 000000008d9b0e88 [ 28.446898] x15: 0000000000000001 x14: 00000000000002ba [ 28.452261] x13: 80a3002c00000002 x12: 00000000000005f4 [ 28.457622] x11: 0000000000000030 x10: 000000000000000c [ 28.462985] x9 : 000000000000000c x8 : 0000000000000030 [ 28.468346] x7 : ffff800014400000 x6 : ffff000106119758 [ 28.473708] x5 : 0000000000000003 x4 : ffff00010775dc60 [ 28.479068] x3 : 0000000000000000 x2 : 0000000000000060 [ 28.484429] x1 : 000071775f776600 x0 : ffff00010775deb8 [ 28.489791] Call trace: [ 28.492259] get_work_pool+0x48/0x60 [ 28.495874] cancel_delayed_work+0x38/0xb0 [ 28.500011] prestera_port_handle_event+0x90/0xa0 [prestera] [ 28.505743] prestera_evt_recv+0x98/0xe0 [prestera] [ 28.510683] prestera_fw_evt_work_fn+0x180/0x228 [prestera_pci] [ 28.516660] process_one_work+0x1e8/0x360 [ 28.520710] worker_thread+0x44/0x480 [ 28.524412] kthread+0x154/0x160 [ 28.527670] ret_from_fork+0x10/0x38 [ 28.531290] Code: a8c17bfd d50323bf d65f03c0 9278dc21 (f9400020) [ 28.537429] ---[ end trace 5eced933df3a080b ]--- | ||||
CVE-2021-47010 | 1 Linux | 1 Linux Kernel | 2025-03-19 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: net: Only allow init netns to set default tcp cong to a restricted algo tcp_set_default_congestion_control() is netns-safe in that it writes to &net->ipv4.tcp_congestion_control, but it also sets ca->flags |= TCP_CONG_NON_RESTRICTED which is not namespaced. This has the unintended side-effect of changing the global net.ipv4.tcp_allowed_congestion_control sysctl, despite the fact that it is read-only: 97684f0970f6 ("net: Make tcp_allowed_congestion_control readonly in non-init netns") Resolve this netns "leak" by only allowing the init netns to set the default algorithm to one that is restricted. This restriction could be removed if tcp_allowed_congestion_control were namespace-ified in the future. This bug was uncovered with https://github.com/JonathonReinhart/linux-netns-sysctl-verify | ||||
CVE-2024-57724 | 2025-03-19 | 6.5 Medium | ||
lunasvg v3.0.0 was discovered to contain a segmentation violation via the component gray_record_cell. | ||||
CVE-2018-9447 | 2025-03-19 | 5.5 Medium | ||
In onCreate of EmergencyCallbackModeExitDialog.java, there is a possible way to crash the emergency callback mode due to a missing null check. This could lead to local denial of service with no additional execution privileges needed. User interaction is not needed for exploitation. | ||||
CVE-2024-57673 | 2025-03-18 | 5.5 Medium | ||
An issue in floodlight v1.2 allows a local attacker to cause a denial of service via the Topology Manager module and Linkdiscovery module | ||||
CVE-2024-57079 | 2025-03-18 | 7.5 High | ||
A prototype pollution in the lib.deepMerge function of @zag-js/core v0.50.0 allows attackers to cause a Denial of Service (DoS) via supplying a crafted payload. | ||||
CVE-2024-57076 | 2025-03-18 | 7.5 High | ||
A prototype pollution in the lib.post function of ajax-request v1.2.3 allows attackers to cause a Denial of Service (DoS) via supplying a crafted payload. | ||||
CVE-2024-44176 | 1 Apple | 6 Ipados, Iphone Os, Macos and 3 more | 2025-03-18 | 5.5 Medium |
An out-of-bounds access issue was addressed with improved bounds checking. This issue is fixed in macOS Ventura 13.7, iOS 17.7 and iPadOS 17.7, visionOS 2, watchOS 11, macOS Sequoia 15, iOS 18 and iPadOS 18, macOS Sonoma 14.7, tvOS 18. Processing an image may lead to a denial-of-service. | ||||
CVE-2024-22102 | 2 Jungo, Mitsubishielectric | 43 Windriver, Cpu Module Logging Configuration Tool, Cw Configurator and 40 more | 2025-03-18 | 5.5 Medium |
Denial of Service (DoS) vulnerability in Jungo WinDriver before 12.6.0 allows local attackers to cause a Windows blue screen error. | ||||
CVE-2023-24580 | 3 Debian, Djangoproject, Redhat | 6 Debian Linux, Django, Ansible Automation Platform and 3 more | 2025-03-18 | 7.5 High |
An issue was discovered in the Multipart Request Parser in Django 3.2 before 3.2.18, 4.0 before 4.0.10, and 4.1 before 4.1.7. Passing certain inputs (e.g., an excessive number of parts) to multipart forms could result in too many open files or memory exhaustion, and provided a potential vector for a denial-of-service attack. | ||||
CVE-2025-29907 | 2025-03-18 | N/A | ||
jsPDF is a library to generate PDFs in JavaScript. Prior to 3.0.1, user control of the first argument of the addImage method results in CPU utilization and denial of service. If given the possibility to pass unsanitised image urls to the addImage method, a user can provide a harmful data-url that results in high CPU utilization and denial of service. Other affected methods are html and addSvgAsImage. The vulnerability was fixed in jsPDF 3.0.1. | ||||
CVE-2025-21547 | 1 Oracle | 1 Hospitality Opera 5 | 2025-03-18 | 9.1 Critical |
Vulnerability in the Oracle Hospitality OPERA 5 product of Oracle Hospitality Applications (component: Opera Servlet). Supported versions that are affected are 5.6.19.20, 5.6.25.8, 5.6.26.6 and 5.6.27.1. Easily exploitable vulnerability allows unauthenticated attacker with network access via HTTP to compromise Oracle Hospitality OPERA 5. Successful attacks of this vulnerability can result in unauthorized access to critical data or complete access to all Oracle Hospitality OPERA 5 accessible data and unauthorized ability to cause a hang or frequently repeatable crash (complete DOS) of Oracle Hospitality OPERA 5. CVSS 3.1 Base Score 9.1 (Confidentiality and Availability impacts). CVSS Vector: (CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:H). | ||||
CVE-2024-57655 | 2025-03-18 | 7.5 High | ||
An issue in the dfe_n_in_order component of openlink virtuoso-opensource v7.2.11 allows attackers to cause a Denial of Service (DoS) via crafted SQL statements. | ||||
CVE-2024-44154 | 1 Apple | 1 Macos | 2025-03-18 | 5.5 Medium |
A memory initialization issue was addressed with improved memory handling. This issue is fixed in macOS Sonoma 14.7, macOS Sequoia 15. Processing a maliciously crafted file may lead to unexpected app termination. | ||||
CVE-2023-37022 | 2025-03-18 | 7.5 High | ||
Open5GS MME versions <= 2.6.4 contain a reachable assertion in the `UE Context Release Request` packet handler. A packet containing an invalid `MME_UE_S1AP_ID` field causes Open5gs to crash; an attacker may repeatedly send such packets to cause denial of service. | ||||
CVE-2024-26780 | 1 Linux | 1 Linux Kernel | 2025-03-18 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix task hung while purging oob_skb in GC. syzbot reported a task hung; at the same time, GC was looping infinitely in list_for_each_entry_safe() for OOB skb. [0] syzbot demonstrated that the list_for_each_entry_safe() was not actually safe in this case. A single skb could have references for multiple sockets. If we free such a skb in the list_for_each_entry_safe(), the current and next sockets could be unlinked in a single iteration. unix_notinflight() uses list_del_init() to unlink the socket, so the prefetched next socket forms a loop itself and list_for_each_entry_safe() never stops. Here, we must use while() and make sure we always fetch the first socket. [0]: Sending NMI from CPU 0 to CPUs 1: NMI backtrace for cpu 1 CPU: 1 PID: 5065 Comm: syz-executor236 Not tainted 6.8.0-rc3-syzkaller-00136-g1f719a2f3fa6 #0 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024 RIP: 0010:preempt_count arch/x86/include/asm/preempt.h:26 [inline] RIP: 0010:check_kcov_mode kernel/kcov.c:173 [inline] RIP: 0010:__sanitizer_cov_trace_pc+0xd/0x60 kernel/kcov.c:207 Code: cc cc cc cc 66 0f 1f 84 00 00 00 00 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 f3 0f 1e fa 65 48 8b 14 25 40 c2 03 00 <65> 8b 05 b4 7c 78 7e a9 00 01 ff 00 48 8b 34 24 74 0f f6 c4 01 74 RSP: 0018:ffffc900033efa58 EFLAGS: 00000283 RAX: ffff88807b077800 RBX: ffff88807b077800 RCX: 1ffffffff27b1189 RDX: ffff88802a5a3b80 RSI: ffffffff8968488d RDI: ffff88807b077f70 RBP: ffffc900033efbb0 R08: 0000000000000001 R09: fffffbfff27a900c R10: ffffffff93d48067 R11: ffffffff8ae000eb R12: ffff88807b077800 R13: dffffc0000000000 R14: ffff88807b077e40 R15: 0000000000000001 FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000564f4fc1e3a8 CR3: 000000000d57a000 CR4: 00000000003506f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <NMI> </NMI> <TASK> unix_gc+0x563/0x13b0 net/unix/garbage.c:319 unix_release_sock+0xa93/0xf80 net/unix/af_unix.c:683 unix_release+0x91/0xf0 net/unix/af_unix.c:1064 __sock_release+0xb0/0x270 net/socket.c:659 sock_close+0x1c/0x30 net/socket.c:1421 __fput+0x270/0xb80 fs/file_table.c:376 task_work_run+0x14f/0x250 kernel/task_work.c:180 exit_task_work include/linux/task_work.h:38 [inline] do_exit+0xa8a/0x2ad0 kernel/exit.c:871 do_group_exit+0xd4/0x2a0 kernel/exit.c:1020 __do_sys_exit_group kernel/exit.c:1031 [inline] __se_sys_exit_group kernel/exit.c:1029 [inline] __x64_sys_exit_group+0x3e/0x50 kernel/exit.c:1029 do_syscall_x64 arch/x86/entry/common.c:52 [inline] do_syscall_64+0xd5/0x270 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe+0x6f/0x77 RIP: 0033:0x7f9d6cbdac09 Code: Unable to access opcode bytes at 0x7f9d6cbdabdf. RSP: 002b:00007fff5952feb8 EFLAGS: 00000246 ORIG_RAX: 00000000000000e7 RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007f9d6cbdac09 RDX: 000000000000003c RSI: 00000000000000e7 RDI: 0000000000000000 RBP: 00007f9d6cc552b0 R08: ffffffffffffffb8 R09: 0000000000000006 R10: 0000000000000006 R11: 0000000000000246 R12: 00007f9d6cc552b0 R13: 0000000000000000 R14: 00007f9d6cc55d00 R15: 00007f9d6cbabe70 </TASK> |