Total
89 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2020-26137 | 5 Canonical, Debian, Oracle and 2 more | 8 Ubuntu Linux, Debian Linux, Communications Cloud Native Core Network Function Cloud Native Environment and 5 more | 2024-11-21 | 6.5 Medium |
urllib3 before 1.25.9 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of putrequest(). NOTE: this is similar to CVE-2020-26116. | ||||
CVE-2020-26116 | 8 Canonical, Debian, Fedoraproject and 5 more | 12 Ubuntu Linux, Debian Linux, Fedora and 9 more | 2024-11-21 | 7.2 High |
http.client in Python 3.x before 3.5.10, 3.6.x before 3.6.12, 3.7.x before 3.7.9, and 3.8.x before 3.8.5 allows CRLF injection if the attacker controls the HTTP request method, as demonstrated by inserting CR and LF control characters in the first argument of HTTPConnection.request. | ||||
CVE-2020-1710 | 1 Redhat | 6 Jboss Data Grid, Jboss Enterprise Application Platform, Jboss Enterprise Application Platform Eus and 3 more | 2024-11-21 | 5.3 Medium |
The issue appears to be that JBoss EAP 6.4.21 does not parse the field-name in accordance to RFC7230[1] as it returns a 200 instead of a 400. | ||||
CVE-2020-11078 | 4 Debian, Fedoraproject, Httplib2 Project and 1 more | 6 Debian Linux, Fedora, Httplib2 and 3 more | 2024-11-21 | 6.8 Medium |
In httplib2 before version 0.18.0, an attacker controlling unescaped part of uri for `httplib2.Http.request()` could change request headers and body, send additional hidden requests to same server. This vulnerability impacts software that uses httplib2 with uri constructed by string concatenation, as opposed to proper urllib building with escaping. This has been fixed in 0.18.0. | ||||
CVE-2020-10753 | 5 Canonical, Fedoraproject, Linuxfoundation and 2 more | 6 Ubuntu Linux, Fedora, Ceph and 3 more | 2024-11-21 | 5.4 Medium |
A flaw was found in the Red Hat Ceph Storage RadosGW (Ceph Object Gateway). The vulnerability is related to the injection of HTTP headers via a CORS ExposeHeader tag. The newline character in the ExposeHeader tag in the CORS configuration file generates a header injection in the response when the CORS request is made. Ceph versions 3.x and 4.x are vulnerable to this issue. | ||||
CVE-2019-9947 | 2 Python, Redhat | 8 Python, Ansible Tower, Enterprise Linux and 5 more | 2024-11-21 | 6.1 Medium |
An issue was discovered in urllib2 in Python 2.x through 2.7.16 and urllib in Python 3.x through 3.7.3. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the path component of a URL that lacks a ? character) followed by an HTTP header or a Redis command. This is similar to the CVE-2019-9740 query string issue. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | ||||
CVE-2019-9741 | 4 Debian, Fedoraproject, Golang and 1 more | 6 Debian Linux, Fedora, Go and 3 more | 2024-11-21 | 6.1 Medium |
An issue was discovered in net/http in Go 1.11.5. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the second argument to http.NewRequest with \r\n followed by an HTTP header or a Redis command. | ||||
CVE-2019-9740 | 2 Python, Redhat | 8 Python, Ansible Tower, Enterprise Linux and 5 more | 2024-11-21 | 6.1 Medium |
An issue was discovered in urllib2 in Python 2.x through 2.7.16 and urllib in Python 3.x through 3.7.3. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the query string after a ? character) followed by an HTTP header or a Redis command. This is fixed in: v2.7.17, v2.7.17rc1, v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1, v3.5.8, v3.5.8rc1, v3.5.8rc2, v3.5.9; v3.6.10, v3.6.10rc1, v3.6.11, v3.6.11rc1, v3.6.12, v3.6.9, v3.6.9rc1; v3.7.4, v3.7.4rc1, v3.7.4rc2, v3.7.5, v3.7.5rc1, v3.7.6, v3.7.6rc1, v3.7.7, v3.7.7rc1, v3.7.8, v3.7.8rc1, v3.7.9. | ||||
CVE-2019-25101 | 1 Turbogears Project | 1 Turbogears | 2024-11-21 | 6.3 Medium |
A vulnerability classified as critical has been found in OnShift TurboGears 1.0.11.10. This affects an unknown part of the file turbogears/controllers.py of the component HTTP Header Handler. The manipulation leads to http response splitting. It is possible to initiate the attack remotely. Upgrading to version 1.0.11.11 is able to address this issue. The patch is named f68bbaba47f4474e1da553aa51564a73e1d92a84. It is recommended to upgrade the affected component. The associated identifier of this vulnerability is VDB-220059. | ||||
CVE-2019-18348 | 2 Python, Redhat | 2 Python, Rhel Software Collections | 2024-11-21 | 6.1 Medium |
An issue was discovered in urllib2 in Python 2.x through 2.7.17 and urllib in Python 3.x through 3.8.0. CRLF injection is possible if the attacker controls a url parameter, as demonstrated by the first argument to urllib.request.urlopen with \r\n (specifically in the host component of a URL) followed by an HTTP header. This is similar to the CVE-2019-9740 query string issue and the CVE-2019-9947 path string issue. (This is not exploitable when glibc has CVE-2016-10739 fixed.). This is fixed in: v2.7.18, v2.7.18rc1; v3.5.10, v3.5.10rc1; v3.6.11, v3.6.11rc1, v3.6.12; v3.7.8, v3.7.8rc1, v3.7.9; v3.8.3, v3.8.3rc1, v3.8.4, v3.8.4rc1, v3.8.5, v3.8.6, v3.8.6rc1. | ||||
CVE-2019-16771 | 1 Linecorp | 1 Armeria | 2024-11-21 | 4.8 Medium |
Versions of Armeria 0.85.0 through and including 0.96.0 are vulnerable to HTTP response splitting, which allows remote attackers to inject arbitrary HTTP headers via CRLF sequences when unsanitized data is used to populate the headers of an HTTP response. This vulnerability has been patched in 0.97.0. Potential impacts of this vulnerability include cross-user defacement, cache poisoning, Cross-site scripting (XSS), and page hijacking. | ||||
CVE-2019-16254 | 3 Debian, Redhat, Ruby-lang | 6 Debian Linux, Enterprise Linux, Rhel E4s and 3 more | 2024-11-21 | 5.3 Medium |
Ruby through 2.4.7, 2.5.x through 2.5.6, and 2.6.x through 2.6.4 allows HTTP Response Splitting. If a program using WEBrick inserts untrusted input into the response header, an attacker can exploit it to insert a newline character to split a header, and inject malicious content to deceive clients. NOTE: this issue exists because of an incomplete fix for CVE-2017-17742, which addressed the CRLF vector, but did not address an isolated CR or an isolated LF. | ||||
CVE-2019-11236 | 2 Python, Redhat | 4 Urllib3, Ansible Tower, Enterprise Linux and 1 more | 2024-11-21 | N/A |
In the urllib3 library through 1.24.1 for Python, CRLF injection is possible if the attacker controls the request parameter. | ||||
CVE-2018-7830 | 1 Schneider-electric | 8 Modicom Bmxnor0200h, Modicom Bmxnor0200h Firmware, Modicom M340 and 5 more | 2024-11-21 | N/A |
Improper Neutralization of CRLF Sequences in HTTP Headers ('HTTP Response Splitting') vulnerability exists in the embedded web servers in all Modicon M340, Premium, Quantum PLCs and BMXNOR0200 where a denial of service can occur for ~1 minute by sending a specially crafted HTTP request. | ||||
CVE-2018-3911 | 1 Samsung | 2 Sth-eth-250, Sth-eth-250 Firmware | 2024-11-21 | 8.6 High |
An exploitable HTTP header injection vulnerability exists in the remote servers of Samsung SmartThings Hub STH-ETH-250 - Firmware version 0.20.17. The hubCore process listens on port 39500 and relays any unauthenticated message to SmartThings' remote servers, which insecurely handle JSON messages, leading to partially controlled requests generated toward the internal video-core process. An attacker can send an HTTP request to trigger this vulnerability. | ||||
CVE-2018-1067 | 1 Redhat | 6 Enterprise Linux, Jboss Enterprise Application Platform, Jboss Enterprise Application Platform Cd and 3 more | 2024-11-21 | 6.1 Medium |
In Undertow before versions 7.1.2.CR1, 7.1.2.GA it was found that the fix for CVE-2016-4993 was incomplete and Undertow web server is vulnerable to the injection of arbitrary HTTP headers, and also response splitting, due to insufficient sanitization and validation of user input before the input is used as part of an HTTP header value. | ||||
CVE-2018-18837 | 1 My-netdata | 1 Netdata | 2024-11-21 | N/A |
An issue was discovered in Netdata 1.10.0. HTTP Header Injection exists via the api/v1/data filename parameter because of web_client_api_request_v1_data in web/api/web_api_v1.c. | ||||
CVE-2018-16979 | 1 Monstra | 1 Monstra | 2024-11-21 | N/A |
Monstra CMS V3.0.4 allows HTTP header injection in the plugins/captcha/crypt/cryptographp.php cfg parameter, a related issue to CVE-2012-2943. | ||||
CVE-2018-16181 | 1 Daj | 1 I-filter | 2024-11-21 | N/A |
HTTP header injection vulnerability in i-FILTER Ver.9.50R05 and earlier may allow remote attackers to inject arbitrary HTTP headers and conduct HTTP response splitting attacks that may result in an arbitrary script injection or setting an arbitrary cookie values via unspecified vectors. | ||||
CVE-2018-13814 | 1 Siemens | 22 Simatic Hmi Comfort Outdoor Panels, Simatic Hmi Comfort Outdoor Panels Firmware, Simatic Hmi Comfort Panels and 19 more | 2024-11-21 | N/A |
A vulnerability has been identified in SIMATIC HMI Comfort Panels 4" - 22" (All versions < V14), SIMATIC HMI Comfort Outdoor Panels 7" & 15" (All versions < V14), SIMATIC HMI KTP Mobile Panels KTP400F, KTP700, KTP700F, KTP900 and KTP900F (All versions < V14), SIMATIC WinCC Runtime Advanced (All versions < V14), SIMATIC WinCC Runtime Professional (All versions < V14), SIMATIC WinCC (TIA Portal) (All versions < V14), SIMATIC HMI Classic Devices (TP/MP/OP/MP Mobile Panel) (All versions). The integrated web server (port 80/tcp and port 443/tcp) of the affected devices could allow an attacker to inject HTTP headers. An attacker must trick a valid user who is authenticated to the device into clicking on a malicious link to exploit the vulnerability. At the time of advisory publication no public exploitation of this security vulnerability was known. |