Filtered by vendor Redhat
Subscriptions
Filtered by product Rhel Aus
Subscriptions
Total
1056 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-35884 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 8.8 High |
In the Linux kernel, the following vulnerability has been resolved: udp: do not accept non-tunnel GSO skbs landing in a tunnel When rx-udp-gro-forwarding is enabled UDP packets might be GROed when being forwarded. If such packets might land in a tunnel this can cause various issues and udp_gro_receive makes sure this isn't the case by looking for a matching socket. This is performed in udp4/6_gro_lookup_skb but only in the current netns. This is an issue with tunneled packets when the endpoint is in another netns. In such cases the packets will be GROed at the UDP level, which leads to various issues later on. The same thing can happen with rx-gro-list. We saw this with geneve packets being GROed at the UDP level. In such case gso_size is set; later the packet goes through the geneve rx path, the geneve header is pulled, the offset are adjusted and frag_list skbs are not adjusted with regard to geneve. When those skbs hit skb_fragment, it will misbehave. Different outcomes are possible depending on what the GROed skbs look like; from corrupted packets to kernel crashes. One example is a BUG_ON[1] triggered in skb_segment while processing the frag_list. Because gso_size is wrong (geneve header was pulled) skb_segment thinks there is "geneve header size" of data in frag_list, although it's in fact the next packet. The BUG_ON itself has nothing to do with the issue. This is only one of the potential issues. Looking up for a matching socket in udp_gro_receive is fragile: the lookup could be extended to all netns (not speaking about performances) but nothing prevents those packets from being modified in between and we could still not find a matching socket. It's OK to keep the current logic there as it should cover most cases but we also need to make sure we handle tunnel packets being GROed too early. This is done by extending the checks in udp_unexpected_gso: GSO packets lacking the SKB_GSO_UDP_TUNNEL/_CSUM bits and landing in a tunnel must be segmented. [1] kernel BUG at net/core/skbuff.c:4408! RIP: 0010:skb_segment+0xd2a/0xf70 __udp_gso_segment+0xaa/0x560 | ||||
CVE-2024-35823 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.3 Medium |
In the Linux kernel, the following vulnerability has been resolved: vt: fix unicode buffer corruption when deleting characters This is the same issue that was fixed for the VGA text buffer in commit 39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the buffer"). The cure is also the same i.e. replace memcpy() with memmove() due to the overlaping buffers. | ||||
CVE-2024-35789 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: check/clear fast rx for non-4addr sta VLAN changes When moving a station out of a VLAN and deleting the VLAN afterwards, the fast_rx entry still holds a pointer to the VLAN's netdev, which can cause use-after-free bugs. Fix this by immediately calling ieee80211_check_fast_rx after the VLAN change. | ||||
CVE-2024-33621 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 2.3 Low |
In the Linux kernel, the following vulnerability has been resolved: ipvlan: Dont Use skb->sk in ipvlan_process_v{4,6}_outbound Raw packet from PF_PACKET socket ontop of an IPv6-backed ipvlan device will hit WARN_ON_ONCE() in sk_mc_loop() through sch_direct_xmit() path. WARNING: CPU: 2 PID: 0 at net/core/sock.c:775 sk_mc_loop+0x2d/0x70 Modules linked in: sch_netem ipvlan rfkill cirrus drm_shmem_helper sg drm_kms_helper CPU: 2 PID: 0 Comm: swapper/2 Kdump: loaded Not tainted 6.9.0+ #279 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 RIP: 0010:sk_mc_loop+0x2d/0x70 Code: fa 0f 1f 44 00 00 65 0f b7 15 f7 96 a3 4f 31 c0 66 85 d2 75 26 48 85 ff 74 1c RSP: 0018:ffffa9584015cd78 EFLAGS: 00010212 RAX: 0000000000000011 RBX: ffff91e585793e00 RCX: 0000000002c6a001 RDX: 0000000000000000 RSI: 0000000000000040 RDI: ffff91e589c0f000 RBP: ffff91e5855bd100 R08: 0000000000000000 R09: 3d00545216f43d00 R10: ffff91e584fdcc50 R11: 00000060dd8616f4 R12: ffff91e58132d000 R13: ffff91e584fdcc68 R14: ffff91e5869ce800 R15: ffff91e589c0f000 FS: 0000000000000000(0000) GS:ffff91e898100000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 00007f788f7c44c0 CR3: 0000000008e1a000 CR4: 00000000000006f0 DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 Call Trace: <IRQ> ? __warn (kernel/panic.c:693) ? sk_mc_loop (net/core/sock.c:760) ? report_bug (lib/bug.c:201 lib/bug.c:219) ? handle_bug (arch/x86/kernel/traps.c:239) ? exc_invalid_op (arch/x86/kernel/traps.c:260 (discriminator 1)) ? asm_exc_invalid_op (./arch/x86/include/asm/idtentry.h:621) ? sk_mc_loop (net/core/sock.c:760) ip6_finish_output2 (net/ipv6/ip6_output.c:83 (discriminator 1)) ? nf_hook_slow (net/netfilter/core.c:626) ip6_finish_output (net/ipv6/ip6_output.c:222) ? __pfx_ip6_finish_output (net/ipv6/ip6_output.c:215) ipvlan_xmit_mode_l3 (drivers/net/ipvlan/ipvlan_core.c:602) ipvlan ipvlan_start_xmit (drivers/net/ipvlan/ipvlan_main.c:226) ipvlan dev_hard_start_xmit (net/core/dev.c:3594) sch_direct_xmit (net/sched/sch_generic.c:343) __qdisc_run (net/sched/sch_generic.c:416) net_tx_action (net/core/dev.c:5286) handle_softirqs (kernel/softirq.c:555) __irq_exit_rcu (kernel/softirq.c:589) sysvec_apic_timer_interrupt (arch/x86/kernel/apic/apic.c:1043) The warning triggers as this: packet_sendmsg packet_snd //skb->sk is packet sk __dev_queue_xmit __dev_xmit_skb //q->enqueue is not NULL __qdisc_run sch_direct_xmit dev_hard_start_xmit ipvlan_start_xmit ipvlan_xmit_mode_l3 //l3 mode ipvlan_process_outbound //vepa flag ipvlan_process_v6_outbound ip6_local_out __ip6_finish_output ip6_finish_output2 //multicast packet sk_mc_loop //sk->sk_family is AF_PACKET Call ip{6}_local_out() with NULL sk in ipvlan as other tunnels to fix this. | ||||
CVE-2024-27020 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-19 | 7 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_expr_type_get() nft_unregister_expr() can concurrent with __nft_expr_type_get(), and there is not any protection when iterate over nf_tables_expressions list in __nft_expr_type_get(). Therefore, there is potential data-race of nf_tables_expressions list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_expressions list in __nft_expr_type_get(), and use rcu_read_lock() in the caller nft_expr_type_get() to protect the entire type query process. | ||||
CVE-2024-27019 | 3 Fedoraproject, Linux, Redhat | 7 Fedora, Linux Kernel, Enterprise Linux and 4 more | 2024-12-19 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: Fix potential data-race in __nft_obj_type_get() nft_unregister_obj() can concurrent with __nft_obj_type_get(), and there is not any protection when iterate over nf_tables_objects list in __nft_obj_type_get(). Therefore, there is potential data-race of nf_tables_objects list entry. Use list_for_each_entry_rcu() to iterate over nf_tables_objects list in __nft_obj_type_get(), and use rcu_read_lock() in the caller nft_obj_type_get() to protect the entire type query process. | ||||
CVE-2024-26923 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 7.0 High |
In the Linux kernel, the following vulnerability has been resolved: af_unix: Fix garbage collector racing against connect() Garbage collector does not take into account the risk of embryo getting enqueued during the garbage collection. If such embryo has a peer that carries SCM_RIGHTS, two consecutive passes of scan_children() may see a different set of children. Leading to an incorrectly elevated inflight count, and then a dangling pointer within the gc_inflight_list. sockets are AF_UNIX/SOCK_STREAM S is an unconnected socket L is a listening in-flight socket bound to addr, not in fdtable V's fd will be passed via sendmsg(), gets inflight count bumped connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc() ---------------- ------------------------- ----------- NS = unix_create1() skb1 = sock_wmalloc(NS) L = unix_find_other(addr) unix_state_lock(L) unix_peer(S) = NS // V count=1 inflight=0 NS = unix_peer(S) skb2 = sock_alloc() skb_queue_tail(NS, skb2[V]) // V became in-flight // V count=2 inflight=1 close(V) // V count=1 inflight=1 // GC candidate condition met for u in gc_inflight_list: if (total_refs == inflight_refs) add u to gc_candidates // gc_candidates={L, V} for u in gc_candidates: scan_children(u, dec_inflight) // embryo (skb1) was not // reachable from L yet, so V's // inflight remains unchanged __skb_queue_tail(L, skb1) unix_state_unlock(L) for u in gc_candidates: if (u.inflight) scan_children(u, inc_inflight_move_tail) // V count=1 inflight=2 (!) If there is a GC-candidate listening socket, lock/unlock its state. This makes GC wait until the end of any ongoing connect() to that socket. After flipping the lock, a possibly SCM-laden embryo is already enqueued. And if there is another embryo coming, it can not possibly carry SCM_RIGHTS. At this point, unix_inflight() can not happen because unix_gc_lock is already taken. Inflight graph remains unaffected. | ||||
CVE-2024-26870 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: NFSv4.2: fix nfs4_listxattr kernel BUG at mm/usercopy.c:102 A call to listxattr() with a buffer size = 0 returns the actual size of the buffer needed for a subsequent call. When size > 0, nfs4_listxattr() does not return an error because either generic_listxattr() or nfs4_listxattr_nfs4_label() consumes exactly all the bytes then size is 0 when calling nfs4_listxattr_nfs4_user() which then triggers the following kernel BUG: [ 99.403778] kernel BUG at mm/usercopy.c:102! [ 99.404063] Internal error: Oops - BUG: 00000000f2000800 [#1] SMP [ 99.408463] CPU: 0 PID: 3310 Comm: python3 Not tainted 6.6.0-61.fc40.aarch64 #1 [ 99.415827] Call trace: [ 99.415985] usercopy_abort+0x70/0xa0 [ 99.416227] __check_heap_object+0x134/0x158 [ 99.416505] check_heap_object+0x150/0x188 [ 99.416696] __check_object_size.part.0+0x78/0x168 [ 99.416886] __check_object_size+0x28/0x40 [ 99.417078] listxattr+0x8c/0x120 [ 99.417252] path_listxattr+0x78/0xe0 [ 99.417476] __arm64_sys_listxattr+0x28/0x40 [ 99.417723] invoke_syscall+0x78/0x100 [ 99.417929] el0_svc_common.constprop.0+0x48/0xf0 [ 99.418186] do_el0_svc+0x24/0x38 [ 99.418376] el0_svc+0x3c/0x110 [ 99.418554] el0t_64_sync_handler+0x120/0x130 [ 99.418788] el0t_64_sync+0x194/0x198 [ 99.418994] Code: aa0003e3 d000a3e0 91310000 97f49bdb (d4210000) Issue is reproduced when generic_listxattr() returns 'system.nfs4_acl', thus calling lisxattr() with size = 16 will trigger the bug. Add check on nfs4_listxattr() to return ERANGE error when it is called with size > 0 and the return value is greater than size. | ||||
CVE-2024-26830 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: i40e: Do not allow untrusted VF to remove administratively set MAC Currently when PF administratively sets VF's MAC address and the VF is put down (VF tries to delete all MACs) then the MAC is removed from MAC filters and primary VF MAC is zeroed. Do not allow untrusted VF to remove primary MAC when it was set administratively by PF. Reproducer: 1) Create VF 2) Set VF interface up 3) Administratively set the VF's MAC 4) Put VF interface down [root@host ~]# echo 1 > /sys/class/net/enp2s0f0/device/sriov_numvfs [root@host ~]# ip link set enp2s0f0v0 up [root@host ~]# ip link set enp2s0f0 vf 0 mac fe:6c:b5:da:c7:7d [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether fe:6c:b5:da:c7:7d brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off [root@host ~]# ip link set enp2s0f0v0 down [root@host ~]# ip link show enp2s0f0 23: enp2s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP mode DEFAULT group default qlen 1000 link/ether 3c:ec:ef:b7:dd:04 brd ff:ff:ff:ff:ff:ff vf 0 link/ether 00:00:00:00:00:00 brd ff:ff:ff:ff:ff:ff, spoof checking on, link-state auto, trust off | ||||
CVE-2024-26826 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix data re-injection from stale subflow When the MPTCP PM detects that a subflow is stale, all the packet scheduler must re-inject all the mptcp-level unacked data. To avoid acquiring unneeded locks, it first try to check if any unacked data is present at all in the RTX queue, but such check is currently broken, as it uses TCP-specific helper on an MPTCP socket. Funnily enough fuzzers and static checkers are happy, as the accessed memory still belongs to the mptcp_sock struct, and even from a functional perspective the recovery completed successfully, as the short-cut test always failed. A recent unrelated TCP change - commit d5fed5addb2b ("tcp: reorganize tcp_sock fast path variables") - exposed the issue, as the tcp field reorganization makes the mptcp code always skip the re-inection. Fix the issue dropping the bogus call: we are on a slow path, the early optimization proved once again to be evil. | ||||
CVE-2024-26810 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 4.4 Medium |
In the Linux kernel, the following vulnerability has been resolved: vfio/pci: Lock external INTx masking ops Mask operations through config space changes to DisINTx may race INTx configuration changes via ioctl. Create wrappers that add locking for paths outside of the core interrupt code. In particular, irq_type is updated holding igate, therefore testing is_intx() requires holding igate. For example clearing DisINTx from config space can otherwise race changes of the interrupt configuration. This aligns interfaces which may trigger the INTx eventfd into two camps, one side serialized by igate and the other only enabled while INTx is configured. A subsequent patch introduces synchronization for the latter flows. | ||||
CVE-2024-26772 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid allocating blocks from corrupted group in ext4_mb_find_by_goal() Places the logic for checking if the group's block bitmap is corrupt under the protection of the group lock to avoid allocating blocks from the group with a corrupted block bitmap. | ||||
CVE-2024-26602 | 2 Linux, Redhat | 9 Linux Kernel, Enterprise Linux, Openshift and 6 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: sched/membarrier: reduce the ability to hammer on sys_membarrier On some systems, sys_membarrier can be very expensive, causing overall slowdowns for everything. So put a lock on the path in order to serialize the accesses to prevent the ability for this to be called at too high of a frequency and saturate the machine. | ||||
CVE-2024-26598 | 3 Debian, Linux, Redhat | 6 Debian Linux, Linux Kernel, Rhel Aus and 3 more | 2024-12-19 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache There is a potential UAF scenario in the case of an LPI translation cache hit racing with an operation that invalidates the cache, such as a DISCARD ITS command. The root of the problem is that vgic_its_check_cache() does not elevate the refcount on the vgic_irq before dropping the lock that serializes refcount changes. Have vgic_its_check_cache() raise the refcount on the returned vgic_irq and add the corresponding decrement after queueing the interrupt. | ||||
CVE-2024-26586 | 2 Linux, Redhat | 7 Linux Kernel, Enterprise Linux, Rhel Aus and 4 more | 2024-12-19 | 6.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: mlxsw: spectrum_acl_tcam: Fix stack corruption When tc filters are first added to a net device, the corresponding local port gets bound to an ACL group in the device. The group contains a list of ACLs. In turn, each ACL points to a different TCAM region where the filters are stored. During forwarding, the ACLs are sequentially evaluated until a match is found. One reason to place filters in different regions is when they are added with decreasing priorities and in an alternating order so that two consecutive filters can never fit in the same region because of their key usage. In Spectrum-2 and newer ASICs the firmware started to report that the maximum number of ACLs in a group is more than 16, but the layout of the register that configures ACL groups (PAGT) was not updated to account for that. It is therefore possible to hit stack corruption [1] in the rare case where more than 16 ACLs in a group are required. Fix by limiting the maximum ACL group size to the minimum between what the firmware reports and the maximum ACLs that fit in the PAGT register. Add a test case to make sure the machine does not crash when this condition is hit. [1] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: mlxsw_sp_acl_tcam_group_update+0x116/0x120 [...] dump_stack_lvl+0x36/0x50 panic+0x305/0x330 __stack_chk_fail+0x15/0x20 mlxsw_sp_acl_tcam_group_update+0x116/0x120 mlxsw_sp_acl_tcam_group_region_attach+0x69/0x110 mlxsw_sp_acl_tcam_vchunk_get+0x492/0xa20 mlxsw_sp_acl_tcam_ventry_add+0x25/0xe0 mlxsw_sp_acl_rule_add+0x47/0x240 mlxsw_sp_flower_replace+0x1a9/0x1d0 tc_setup_cb_add+0xdc/0x1c0 fl_hw_replace_filter+0x146/0x1f0 fl_change+0xc17/0x1360 tc_new_tfilter+0x472/0xb90 rtnetlink_rcv_msg+0x313/0x3b0 netlink_rcv_skb+0x58/0x100 netlink_unicast+0x244/0x390 netlink_sendmsg+0x1e4/0x440 ____sys_sendmsg+0x164/0x260 ___sys_sendmsg+0x9a/0xe0 __sys_sendmsg+0x7a/0xc0 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x63/0x6b | ||||
CVE-2024-26585 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-19 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between tx work scheduling and socket close Similarly to previous commit, the submitting thread (recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete(). Reorder scheduling the work before calling complete(). This seems more logical in the first place, as it's the inverse order of what the submitting thread will do. | ||||
CVE-2024-26584 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-19 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: net: tls: handle backlogging of crypto requests Since we're setting the CRYPTO_TFM_REQ_MAY_BACKLOG flag on our requests to the crypto API, crypto_aead_{encrypt,decrypt} can return -EBUSY instead of -EINPROGRESS in valid situations. For example, when the cryptd queue for AESNI is full (easy to trigger with an artificially low cryptd.cryptd_max_cpu_qlen), requests will be enqueued to the backlog but still processed. In that case, the async callback will also be called twice: first with err == -EINPROGRESS, which it seems we can just ignore, then with err == 0. Compared to Sabrina's original patch this version uses the new tls_*crypt_async_wait() helpers and converts the EBUSY to EINPROGRESS to avoid having to modify all the error handling paths. The handling is identical. | ||||
CVE-2024-26583 | 2 Linux, Redhat | 6 Linux Kernel, Enterprise Linux, Rhel Aus and 3 more | 2024-12-19 | 4.7 Medium |
In the Linux kernel, the following vulnerability has been resolved: tls: fix race between async notify and socket close The submitting thread (one which called recvmsg/sendmsg) may exit as soon as the async crypto handler calls complete() so any code past that point risks touching already freed data. Try to avoid the locking and extra flags altogether. Have the main thread hold an extra reference, this way we can depend solely on the atomic ref counter for synchronization. Don't futz with reiniting the completion, either, we are now tightly controlling when completion fires. | ||||
CVE-2023-52885 | 2 Linux, Redhat | 5 Linux Kernel, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: SUNRPC: Fix UAF in svc_tcp_listen_data_ready() After the listener svc_sock is freed, and before invoking svc_tcp_accept() for the established child sock, there is a window that the newsock retaining a freed listener svc_sock in sk_user_data which cloning from parent. In the race window, if data is received on the newsock, we will observe use-after-free report in svc_tcp_listen_data_ready(). Reproduce by two tasks: 1. while :; do rpc.nfsd 0 ; rpc.nfsd; done 2. while :; do echo "" | ncat -4 127.0.0.1 2049 ; done KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] Read of size 8 at addr ffff888139d96228 by task nc/102553 CPU: 7 PID: 102553 Comm: nc Not tainted 6.3.0+ #18 Hardware name: VMware, Inc. VMware Virtual Platform/440BX Desktop Reference Platform, BIOS 6.00 11/12/2020 Call Trace: <IRQ> dump_stack_lvl+0x33/0x50 print_address_description.constprop.0+0x27/0x310 print_report+0x3e/0x70 kasan_report+0xae/0xe0 svc_tcp_listen_data_ready+0x1cf/0x1f0 [sunrpc] tcp_data_queue+0x9f4/0x20e0 tcp_rcv_established+0x666/0x1f60 tcp_v4_do_rcv+0x51c/0x850 tcp_v4_rcv+0x23fc/0x2e80 ip_protocol_deliver_rcu+0x62/0x300 ip_local_deliver_finish+0x267/0x350 ip_local_deliver+0x18b/0x2d0 ip_rcv+0x2fb/0x370 __netif_receive_skb_one_core+0x166/0x1b0 process_backlog+0x24c/0x5e0 __napi_poll+0xa2/0x500 net_rx_action+0x854/0xc90 __do_softirq+0x1bb/0x5de do_softirq+0xcb/0x100 </IRQ> <TASK> ... </TASK> Allocated by task 102371: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 __kasan_kmalloc+0x7b/0x90 svc_setup_socket+0x52/0x4f0 [sunrpc] svc_addsock+0x20d/0x400 [sunrpc] __write_ports_addfd+0x209/0x390 [nfsd] write_ports+0x239/0x2c0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Freed by task 102551: kasan_save_stack+0x1e/0x40 kasan_set_track+0x21/0x30 kasan_save_free_info+0x2a/0x50 __kasan_slab_free+0x106/0x190 __kmem_cache_free+0x133/0x270 svc_xprt_free+0x1e2/0x350 [sunrpc] svc_xprt_destroy_all+0x25a/0x440 [sunrpc] nfsd_put+0x125/0x240 [nfsd] nfsd_svc+0x2cb/0x3c0 [nfsd] write_threads+0x1ac/0x2a0 [nfsd] nfsctl_transaction_write+0xac/0x110 [nfsd] vfs_write+0x1c3/0xae0 ksys_write+0xed/0x1c0 do_syscall_64+0x38/0x90 entry_SYSCALL_64_after_hwframe+0x72/0xdc Fix the UAF by simply doing nothing in svc_tcp_listen_data_ready() if state != TCP_LISTEN, that will avoid dereferencing svsk for all child socket. | ||||
CVE-2023-52881 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2024-12-19 | 5.9 Medium |
In the Linux kernel, the following vulnerability has been resolved: tcp: do not accept ACK of bytes we never sent This patch is based on a detailed report and ideas from Yepeng Pan and Christian Rossow. ACK seq validation is currently following RFC 5961 5.2 guidelines: The ACK value is considered acceptable only if it is in the range of ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT). All incoming segments whose ACK value doesn't satisfy the above condition MUST be discarded and an ACK sent back. It needs to be noted that RFC 793 on page 72 (fifth check) says: "If the ACK is a duplicate (SEG.ACK < SND.UNA), it can be ignored. If the ACK acknowledges something not yet sent (SEG.ACK > SND.NXT) then send an ACK, drop the segment, and return". The "ignored" above implies that the processing of the incoming data segment continues, which means the ACK value is treated as acceptable. This mitigation makes the ACK check more stringent since any ACK < SND.UNA wouldn't be accepted, instead only ACKs that are in the range ((SND.UNA - MAX.SND.WND) <= SEG.ACK <= SND.NXT) get through. This can be refined for new (and possibly spoofed) flows, by not accepting ACK for bytes that were never sent. This greatly improves TCP security at a little cost. I added a Fixes: tag to make sure this patch will reach stable trees, even if the 'blamed' patch was adhering to the RFC. tp->bytes_acked was added in linux-4.2 Following packetdrill test (courtesy of Yepeng Pan) shows the issue at hand: 0 socket(..., SOCK_STREAM, IPPROTO_TCP) = 3 +0 setsockopt(3, SOL_SOCKET, SO_REUSEADDR, [1], 4) = 0 +0 bind(3, ..., ...) = 0 +0 listen(3, 1024) = 0 // ---------------- Handshake ------------------- // // when window scale is set to 14 the window size can be extended to // 65535 * (2^14) = 1073725440. Linux would accept an ACK packet // with ack number in (Server_ISN+1-1073725440. Server_ISN+1) // ,though this ack number acknowledges some data never // sent by the server. +0 < S 0:0(0) win 65535 <mss 1400,nop,wscale 14> +0 > S. 0:0(0) ack 1 <...> +0 < . 1:1(0) ack 1 win 65535 +0 accept(3, ..., ...) = 4 // For the established connection, we send an ACK packet, // the ack packet uses ack number 1 - 1073725300 + 2^32, // where 2^32 is used to wrap around. // Note: we used 1073725300 instead of 1073725440 to avoid possible // edge cases. // 1 - 1073725300 + 2^32 = 3221241997 // Oops, old kernels happily accept this packet. +0 < . 1:1001(1000) ack 3221241997 win 65535 // After the kernel fix the following will be replaced by a challenge ACK, // and prior malicious frame would be dropped. +0 > . 1:1(0) ack 1001 |