Total
286780 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2025-2320 | 2025-03-17 | 7.3 High | ||
A vulnerability has been found in 274056675 springboot-openai-chatgpt e84f6f5 and classified as critical. Affected by this vulnerability is the function submit of the file /api/blade-user/submit of the component User Handler. The manipulation leads to improper authorization. The attack can be launched remotely. The exploit has been disclosed to the public and may be used. This product takes the approach of rolling releases to provide continious delivery. Therefore, version details for affected and updated releases are not available. The vendor was contacted early about this disclosure but did not respond in any way. | ||||
CVE-2023-52621 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: bpf: Check rcu_read_lock_trace_held() before calling bpf map helpers These three bpf_map_{lookup,update,delete}_elem() helpers are also available for sleepable bpf program, so add the corresponding lock assertion for sleepable bpf program, otherwise the following warning will be reported when a sleepable bpf program manipulates bpf map under interpreter mode (aka bpf_jit_enable=0): WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ...... CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ...... RIP: 0010:bpf_map_lookup_elem+0x54/0x60 ...... Call Trace: <TASK> ? __warn+0xa5/0x240 ? bpf_map_lookup_elem+0x54/0x60 ? report_bug+0x1ba/0x1f0 ? handle_bug+0x40/0x80 ? exc_invalid_op+0x18/0x50 ? asm_exc_invalid_op+0x1b/0x20 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ? rcu_lockdep_current_cpu_online+0x65/0xb0 ? rcu_is_watching+0x23/0x50 ? bpf_map_lookup_elem+0x54/0x60 ? __pfx_bpf_map_lookup_elem+0x10/0x10 ___bpf_prog_run+0x513/0x3b70 __bpf_prog_run32+0x9d/0xd0 ? __bpf_prog_enter_sleepable_recur+0xad/0x120 ? __bpf_prog_enter_sleepable_recur+0x3e/0x120 bpf_trampoline_6442580665+0x4d/0x1000 __x64_sys_getpgid+0x5/0x30 ? do_syscall_64+0x36/0xb0 entry_SYSCALL_64_after_hwframe+0x6e/0x76 </TASK> | ||||
CVE-2023-52622 | 3 Debian, Linux, Redhat | 3 Debian Linux, Linux Kernel, Enterprise Linux | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid online resizing failures due to oversized flex bg When we online resize an ext4 filesystem with a oversized flexbg_size, mkfs.ext4 -F -G 67108864 $dev -b 4096 100M mount $dev $dir resize2fs $dev 16G the following WARN_ON is triggered: ================================================================== WARNING: CPU: 0 PID: 427 at mm/page_alloc.c:4402 __alloc_pages+0x411/0x550 Modules linked in: sg(E) CPU: 0 PID: 427 Comm: resize2fs Tainted: G E 6.6.0-rc5+ #314 RIP: 0010:__alloc_pages+0x411/0x550 Call Trace: <TASK> __kmalloc_large_node+0xa2/0x200 __kmalloc+0x16e/0x290 ext4_resize_fs+0x481/0xd80 __ext4_ioctl+0x1616/0x1d90 ext4_ioctl+0x12/0x20 __x64_sys_ioctl+0xf0/0x150 do_syscall_64+0x3b/0x90 ================================================================== This is because flexbg_size is too large and the size of the new_group_data array to be allocated exceeds MAX_ORDER. Currently, the minimum value of MAX_ORDER is 8, the minimum value of PAGE_SIZE is 4096, the corresponding maximum number of groups that can be allocated is: (PAGE_SIZE << MAX_ORDER) / sizeof(struct ext4_new_group_data) ≈ 21845 And the value that is down-aligned to the power of 2 is 16384. Therefore, this value is defined as MAX_RESIZE_BG, and the number of groups added each time does not exceed this value during resizing, and is added multiple times to complete the online resizing. The difference is that the metadata in a flex_bg may be more dispersed. | ||||
CVE-2025-25664 | 1 Tenda | 2 Ac8, Ac8 Firmware | 2025-03-17 | 9.8 Critical |
Tenda AC8V4 V16.03.34.06 was discovered to contain a stack overflow via the shareSpeed parameter in the sub_49E098 function. | ||||
CVE-2023-52624 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Wake DMCUB before executing GPINT commands [Why] DMCUB can be in idle when we attempt to interface with the HW through the GPINT mailbox resulting in a system hang. [How] Add dc_wake_and_execute_gpint() to wrap the wake, execute, sleep sequence. If the GPINT executes successfully then DMCUB will be put back into sleep after the optional response is returned. It functions similar to the inbox command interface. | ||||
CVE-2023-52625 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Refactor DMCUB enter/exit idle interface [Why] We can hang in place trying to send commands when the DMCUB isn't powered on. [How] We need to exit out of the idle state prior to sending a command, but the process that performs the exit also invokes a command itself. Fixing this issue involves the following: 1. Using a software state to track whether or not we need to start the process to exit idle or notify idle. It's possible for the hardware to have exited an idle state without driver knowledge, but entering one is always restricted to a driver allow - which makes the SW state vs HW state mismatch issue purely one of optimization, which should seldomly be hit, if at all. 2. Refactor any instances of exit/notify idle to use a single wrapper that maintains this SW state. This works simialr to dc_allow_idle_optimizations, but works at the DMCUB level and makes sure the state is marked prior to any notify/exit idle so we don't enter an infinite loop. 3. Make sure we exit out of idle prior to sending any commands or waiting for DMCUB idle. This patch takes care of 1/2. A future patch will take care of wrapping DMCUB command submission with calls to this new interface. | ||||
CVE-2023-52626 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Fix operation precedence bug in port timestamping napi_poll context Indirection (*) is of lower precedence than postfix increment (++). Logic in napi_poll context would cause an out-of-bound read by first increment the pointer address by byte address space and then dereference the value. Rather, the intended logic was to dereference first and then increment the underlying value. | ||||
CVE-2024-26646 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: thermal: intel: hfi: Add syscore callbacks for system-wide PM The kernel allocates a memory buffer and provides its location to the hardware, which uses it to update the HFI table. This allocation occurs during boot and remains constant throughout runtime. When resuming from hibernation, the restore kernel allocates a second memory buffer and reprograms the HFI hardware with the new location as part of a normal boot. The location of the second memory buffer may differ from the one allocated by the image kernel. When the restore kernel transfers control to the image kernel, its HFI buffer becomes invalid, potentially leading to memory corruption if the hardware writes to it (the hardware continues to use the buffer from the restore kernel). It is also possible that the hardware "forgets" the address of the memory buffer when resuming from "deep" suspend. Memory corruption may also occur in such a scenario. To prevent the described memory corruption, disable HFI when preparing to suspend or hibernate. Enable it when resuming. Add syscore callbacks to handle the package of the boot CPU (packages of non-boot CPUs are handled via CPU offline). Syscore ops always run on the boot CPU. Additionally, HFI only needs to be disabled during "deep" suspend and hibernation. Syscore ops only run in these cases. [ rjw: Comment adjustment, subject and changelog edits ] | ||||
CVE-2024-26651 | 1 Linux | 1 Linux Kernel | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: sr9800: Add check for usbnet_get_endpoints Add check for usbnet_get_endpoints() and return the error if it fails in order to transfer the error. | ||||
CVE-2023-52628 | 2 Linux, Redhat | 2 Linux Kernel, Rhel Eus | 2025-03-17 | 7.1 High |
In the Linux kernel, the following vulnerability has been resolved: netfilter: nftables: exthdr: fix 4-byte stack OOB write If priv->len is a multiple of 4, then dst[len / 4] can write past the destination array which leads to stack corruption. This construct is necessary to clean the remainder of the register in case ->len is NOT a multiple of the register size, so make it conditional just like nft_payload.c does. The bug was added in 4.1 cycle and then copied/inherited when tcp/sctp and ip option support was added. Bug reported by Zero Day Initiative project (ZDI-CAN-21950, ZDI-CAN-21951, ZDI-CAN-21961). | ||||
CVE-2023-52632 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amdkfd: Fix lock dependency warning with srcu ====================================================== WARNING: possible circular locking dependency detected 6.5.0-kfd-yangp #2289 Not tainted ------------------------------------------------------ kworker/0:2/996 is trying to acquire lock: (srcu){.+.+}-{0:0}, at: __synchronize_srcu+0x5/0x1a0 but task is already holding lock: ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}, at: process_one_work+0x211/0x560 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #3 ((work_completion)(&svms->deferred_list_work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 svm_range_list_lock_and_flush_work+0x3d/0x110 [amdgpu] svm_range_set_attr+0xd6/0x14c0 [amdgpu] kfd_ioctl+0x1d1/0x630 [amdgpu] __x64_sys_ioctl+0x88/0xc0 -> #2 (&info->lock#2){+.+.}-{3:3}: __mutex_lock+0x99/0xc70 amdgpu_amdkfd_gpuvm_restore_process_bos+0x54/0x740 [amdgpu] restore_process_helper+0x22/0x80 [amdgpu] restore_process_worker+0x2d/0xa0 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 -> #1 ((work_completion)(&(&process->restore_work)->work)){+.+.}-{0:0}: __flush_work+0x88/0x4f0 __cancel_work_timer+0x12c/0x1c0 kfd_process_notifier_release_internal+0x37/0x1f0 [amdgpu] __mmu_notifier_release+0xad/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 do_exit+0x322/0xb90 do_group_exit+0x37/0xa0 __x64_sys_exit_group+0x18/0x20 do_syscall_64+0x38/0x80 -> #0 (srcu){.+.+}-{0:0}: __lock_acquire+0x1521/0x2510 lock_sync+0x5f/0x90 __synchronize_srcu+0x4f/0x1a0 __mmu_notifier_release+0x128/0x240 exit_mmap+0x6a/0x3a0 mmput+0x6a/0x120 svm_range_deferred_list_work+0x19f/0x350 [amdgpu] process_one_work+0x29b/0x560 worker_thread+0x3d/0x3d0 other info that might help us debug this: Chain exists of: srcu --> &info->lock#2 --> (work_completion)(&svms->deferred_list_work) Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock((work_completion)(&svms->deferred_list_work)); lock(&info->lock#2); lock((work_completion)(&svms->deferred_list_work)); sync(srcu); | ||||
CVE-2023-52633 | 1 Linux | 1 Linux Kernel | 2025-03-17 | 5.0 Medium |
In the Linux kernel, the following vulnerability has been resolved: um: time-travel: fix time corruption In 'basic' time-travel mode (without =inf-cpu or =ext), we still get timer interrupts. These can happen at arbitrary points in time, i.e. while in timer_read(), which pushes time forward just a little bit. Then, if we happen to get the interrupt after calculating the new time to push to, but before actually finishing that, the interrupt will set the time to a value that's incompatible with the forward, and we'll crash because time goes backwards when we do the forwarding. Fix this by reading the time_travel_time, calculating the adjustment, and doing the adjustment all with interrupts disabled. | ||||
CVE-2023-52634 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-03-17 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: drm/amd/display: Fix disable_otg_wa logic [Why] When switching to another HDMI mode, we are unnecesarilly disabling/enabling FIFO causing both HPO and DIG registers to be set at the same time when only HPO is supposed to be set. This can lead to a system hang the next time we change refresh rates as there are cases when we don't disable OTG/FIFO but FIFO is enabled when it isn't supposed to be. [How] Removing the enable/disable FIFO entirely. | ||||
CVE-2025-1774 | 2025-03-17 | N/A | ||
Incorrect string encoding vulnerability in NASK - PIB BotSense allows injection of an additional field separator character or value in the content of some fields of the generated event. A field with additional field separator characters or values can be included in the "extraData" field.This issue affects BotSense in versions before 2.8.0. | ||||
CVE-2025-2381 | 2025-03-17 | 7.3 High | ||
A vulnerability classified as critical has been found in PHPGurukul Curfew e-Pass Management System 1.0. Affected is an unknown function of the file /admin/search-pass.php. The manipulation of the argument searchdata leads to sql injection. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. | ||||
CVE-2025-2339 | 2025-03-17 | 5.3 Medium | ||
A vulnerability was found in otale Tale Blog 2.0.5. It has been classified as problematic. This affects an unknown part of the file /%61dmin/api/logs. The manipulation leads to improper authentication. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. The vendor was contacted early about this disclosure but did not respond in any way. This vulnerability only affects products that are no longer supported by the maintainer. | ||||
CVE-2025-2338 | 2025-03-17 | 6.3 Medium | ||
A vulnerability, which was classified as critical, was found in tbeu matio 1.5.28. Affected is the function strdup_vprintf of the file src/io.c. The manipulation leads to heap-based buffer overflow. It is possible to launch the attack remotely. The exploit has been disclosed to the public and may be used. | ||||
CVE-2025-2337 | 2025-03-17 | 6.3 Medium | ||
A vulnerability, which was classified as critical, has been found in tbeu matio 1.5.28. This issue affects the function Mat_VarPrint of the file src/mat.c. The manipulation leads to heap-based buffer overflow. The attack may be initiated remotely. The exploit has been disclosed to the public and may be used. | ||||
CVE-2025-27636 | 1 Redhat | 1 Camel Quarkus | 2025-03-17 | 5.6 Medium |
Bypass/Injection vulnerability in Apache Camel components under particular conditions. This issue affects Apache Camel: from 4.10.0 through <= 4.10.1, from 4.8.0 through <= 4.8.4, from 3.10.0 through <= 3.22.3. Users are recommended to upgrade to version 4.10.2 for 4.10.x LTS, 4.8.5 for 4.8.x LTS and 3.22.4 for 3.x releases. This vulnerability is present in Camel's default incoming header filter, that allows an attacker to include Camel specific headers that for some Camel components can alter the behaviours such as the camel-bean component, to call another method on the bean, than was coded in the application. In the camel-jms component, then a malicious header can be used to send the message to another queue (on the same broker) than was coded in the application. This could also be seen by using the camel-exec component The attacker would need to inject custom headers, such as HTTP protocols. So if you have Camel applications that are directly connected to the internet via HTTP, then an attacker could include malicious HTTP headers in the HTTP requests that are send to the Camel application. All the known Camel HTTP component such as camel-servlet, camel-jetty, camel-undertow, camel-platform-http, and camel-netty-http would be vulnerable out of the box. In these conditions an attacker could be able to forge a Camel header name and make the bean component invoking other methods in the same bean. In terms of usage of the default header filter strategy the list of components using that is: * camel-activemq * camel-activemq6 * camel-amqp * camel-aws2-sqs * camel-azure-servicebus * camel-cxf-rest * camel-cxf-soap * camel-http * camel-jetty * camel-jms * camel-kafka * camel-knative * camel-mail * camel-nats * camel-netty-http * camel-platform-http * camel-rest * camel-sjms * camel-spring-rabbitmq * camel-stomp * camel-tahu * camel-undertow * camel-xmpp The vulnerability arises due to a bug in the default filtering mechanism that only blocks headers starting with "Camel", "camel", or "org.apache.camel.". Mitigation: You can easily work around this in your Camel applications by removing the headers in your Camel routes. There are many ways of doing this, also globally or per route. This means you could use the removeHeaders EIP, to filter out anything like "cAmel, cAMEL" etc, or in general everything not starting with "Camel", "camel" or "org.apache.camel.". | ||||
CVE-2025-27512 | 2025-03-17 | N/A | ||
Zincati is an auto-update agent for Fedora CoreOS hosts. Zincati ships a polkit rule which allows the `zincati` system user to use the actions `org.projectatomic.rpmostree1.deploy` to deploy updates to the system and `org.projectatomic.rpmostree1.finalize-deployment` to reboot the system into the deployed update. Since Zincati v0.0.24, this polkit rule contains a logic error which broadens access of those polkit actions to any unprivileged user rather than just the `zincati` system user. In practice, this means that any unprivileged user with access to the system D-Bus socket is able to deploy older Fedora CoreOS versions (which may have other known vulnerabilities). Note that rpm-ostree enforces that the selected version must be from the same branch the system is currently on so this cannot directly be used to deploy an attacker-controlled update payload. This primarily impacts users running untrusted workloads with access to the system D-Bus socket. Note that in general, untrusted workloads should not be given this access, whether containerized or not. By default, containers do not have access to the system D-Bus socket. The logic error is fixed in Zincati v0.0.30. A workaround is to manually add a following polkit rule, instructions for which are available in the GitHub Security Advisory. |