Filtered by vendor Redhat Subscriptions
Total 21758 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-26669 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-03-17 7.1 High
In the Linux kernel, the following vulnerability has been resolved: net/sched: flower: Fix chain template offload When a qdisc is deleted from a net device the stack instructs the underlying driver to remove its flow offload callback from the associated filter block using the 'FLOW_BLOCK_UNBIND' command. The stack then continues to replay the removal of the filters in the block for this driver by iterating over the chains in the block and invoking the 'reoffload' operation of the classifier being used. In turn, the classifier in its 'reoffload' operation prepares and emits a 'FLOW_CLS_DESTROY' command for each filter. However, the stack does not do the same for chain templates and the underlying driver never receives a 'FLOW_CLS_TMPLT_DESTROY' command when a qdisc is deleted. This results in a memory leak [1] which can be reproduced using [2]. Fix by introducing a 'tmplt_reoffload' operation and have the stack invoke it with the appropriate arguments as part of the replay. Implement the operation in the sole classifier that supports chain templates (flower) by emitting the 'FLOW_CLS_TMPLT_{CREATE,DESTROY}' command based on whether a flow offload callback is being bound to a filter block or being unbound from one. As far as I can tell, the issue happens since cited commit which reordered tcf_block_offload_unbind() before tcf_block_flush_all_chains() in __tcf_block_put(). The order cannot be reversed as the filter block is expected to be freed after flushing all the chains. [1] unreferenced object 0xffff888107e28800 (size 2048): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): b1 a6 7c 11 81 88 ff ff e0 5b b3 10 81 88 ff ff ..|......[...... 01 00 00 00 00 00 00 00 e0 aa b0 84 ff ff ff ff ................ backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab374e>] __kmalloc+0x4e/0x90 [<ffffffff832aec6d>] mlxsw_sp_acl_ruleset_get+0x34d/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [<ffffffff8379d29a>] ___sys_sendmsg+0x13a/0x1e0 [<ffffffff8379d50c>] __sys_sendmsg+0x11c/0x1f0 [<ffffffff843b9ce0>] do_syscall_64+0x40/0xe0 unreferenced object 0xffff88816d2c0400 (size 1024): comm "tc", pid 1079, jiffies 4294958525 (age 3074.287s) hex dump (first 32 bytes): 40 00 00 00 00 00 00 00 57 f6 38 be 00 00 00 00 @.......W.8..... 10 04 2c 6d 81 88 ff ff 10 04 2c 6d 81 88 ff ff ..,m......,m.... backtrace: [<ffffffff81c06a68>] __kmem_cache_alloc_node+0x1e8/0x320 [<ffffffff81ab36c1>] __kmalloc_node+0x51/0x90 [<ffffffff81a8ed96>] kvmalloc_node+0xa6/0x1f0 [<ffffffff82827d03>] bucket_table_alloc.isra.0+0x83/0x460 [<ffffffff82828d2b>] rhashtable_init+0x43b/0x7c0 [<ffffffff832aed48>] mlxsw_sp_acl_ruleset_get+0x428/0x7a0 [<ffffffff832bc195>] mlxsw_sp_flower_tmplt_create+0x145/0x180 [<ffffffff832b2e1a>] mlxsw_sp_flow_block_cb+0x1ea/0x280 [<ffffffff83a10613>] tc_setup_cb_call+0x183/0x340 [<ffffffff83a9f85a>] fl_tmplt_create+0x3da/0x4c0 [<ffffffff83a22435>] tc_ctl_chain+0xa15/0x1170 [<ffffffff838a863c>] rtnetlink_rcv_msg+0x3cc/0xed0 [<ffffffff83ac87f0>] netlink_rcv_skb+0x170/0x440 [<ffffffff83ac6270>] netlink_unicast+0x540/0x820 [<ffffffff83ac6e28>] netlink_sendmsg+0x8d8/0xda0 [<ffffffff83793def>] ____sys_sendmsg+0x30f/0xa80 [2] # tc qdisc add dev swp1 clsact # tc chain add dev swp1 ingress proto ip chain 1 flower dst_ip 0.0.0.0/32 # tc qdisc del dev ---truncated---
CVE-2024-26670 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2025-03-17 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64: entry: fix ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD Currently the ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround isn't quite right, as it is supposed to be applied after the last explicit memory access, but is immediately followed by an LDR. The ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD workaround is used to handle Cortex-A520 erratum 2966298 and Cortex-A510 erratum 3117295, which are described in: * https://developer.arm.com/documentation/SDEN2444153/0600/?lang=en * https://developer.arm.com/documentation/SDEN1873361/1600/?lang=en In both cases the workaround is described as: | If pagetable isolation is disabled, the context switch logic in the | kernel can be updated to execute the following sequence on affected | cores before exiting to EL0, and after all explicit memory accesses: | | 1. A non-shareable TLBI to any context and/or address, including | unused contexts or addresses, such as a `TLBI VALE1 Xzr`. | | 2. A DSB NSH to guarantee completion of the TLBI. The important part being that the TLBI+DSB must be placed "after all explicit memory accesses". Unfortunately, as-implemented, the TLBI+DSB is immediately followed by an LDR, as we have: | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | alternative_if_not ARM64_UNMAP_KERNEL_AT_EL0 | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | eret | alternative_else_nop_endif | | [ ... KPTI exception return path ... ] This patch fixes this by reworking the logic to place the TLBI+DSB immediately before the ERET, after all explicit memory accesses. The ERET is currently in a separate alternative block, and alternatives cannot be nested. To account for this, the alternative block for ARM64_UNMAP_KERNEL_AT_EL0 is replaced with a single alternative branch to skip the KPTI logic, with the new shape of the logic being: | alternative_insn "b .L_skip_tramp_exit_\@", nop, ARM64_UNMAP_KERNEL_AT_EL0 | [ ... KPTI exception return path ... ] | .L_skip_tramp_exit_\@: | | ldr lr, [sp, #S_LR] | add sp, sp, #PT_REGS_SIZE // restore sp | | alternative_if ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD | tlbi vale1, xzr | dsb nsh | alternative_else_nop_endif | eret The new structure means that the workaround is only applied when KPTI is not in use; this is fine as noted in the documented implications of the erratum: | Pagetable isolation between EL0 and higher level ELs prevents the | issue from occurring. ... and as per the workaround description quoted above, the workaround is only necessary "If pagetable isolation is disabled".
CVE-2024-26671 3 Debian, Linux, Redhat 5 Debian Linux, Linux Kernel, Enterprise Linux and 2 more 2025-03-17 4.7 Medium
In the Linux kernel, the following vulnerability has been resolved: blk-mq: fix IO hang from sbitmap wakeup race In blk_mq_mark_tag_wait(), __add_wait_queue() may be re-ordered with the following blk_mq_get_driver_tag() in case of getting driver tag failure. Then in __sbitmap_queue_wake_up(), waitqueue_active() may not observe the added waiter in blk_mq_mark_tag_wait() and wake up nothing, meantime blk_mq_mark_tag_wait() can't get driver tag successfully. This issue can be reproduced by running the following test in loop, and fio hang can be observed in < 30min when running it on my test VM in laptop. modprobe -r scsi_debug modprobe scsi_debug delay=0 dev_size_mb=4096 max_queue=1 host_max_queue=1 submit_queues=4 dev=`ls -d /sys/bus/pseudo/drivers/scsi_debug/adapter*/host*/target*/*/block/* | head -1 | xargs basename` fio --filename=/dev/"$dev" --direct=1 --rw=randrw --bs=4k --iodepth=1 \ --runtime=100 --numjobs=40 --time_based --name=test \ --ioengine=libaio Fix the issue by adding one explicit barrier in blk_mq_mark_tag_wait(), which is just fine in case of running out of tag.
CVE-2025-0624 1 Redhat 6 Enterprise Linux, Openshift, Rhel Aus and 3 more 2025-03-17 7.6 High
A flaw was found in grub2. During the network boot process, when trying to search for the configuration file, grub copies data from a user controlled environment variable into an internal buffer using the grub_strcpy() function. During this step, it fails to consider the environment variable length when allocating the internal buffer, resulting in an out-of-bounds write. If correctly exploited, this issue may result in remote code execution through the same network segment grub is searching for the boot information, which can be used to by-pass secure boot protections.
CVE-2025-1391 1 Redhat 1 Build Keycloak 2025-03-15 5.4 Medium
A flaw was found in the Keycloak organization feature, which allows the incorrect assignment of an organization to a user if their username or email matches the organization’s domain pattern. This issue occurs at the mapper level, leading to misrepresentation in tokens. If an application relies on these claims for authorization, it may incorrectly assume a user belongs to an organization they are not a member of, potentially granting unauthorized access or privileges.
CVE-2025-1247 1 Redhat 2 Camel Quarkus, Quarkus 2025-03-15 8.3 High
A flaw was found in Quarkus REST that allows request parameters to leak between concurrent requests if endpoints use field injection without a CDI scope. This vulnerability allows attackers to manipulate request data, impersonate users, or access sensitive information.
CVE-2025-1244 1 Redhat 7 Enterprise Linux, Openshift Builds, Rhel Aus and 4 more 2025-03-15 8.8 High
A command injection flaw was found in the text editor Emacs. It could allow a remote, unauthenticated attacker to execute arbitrary shell commands on a vulnerable system. Exploitation is possible by tricking users into visiting a specially crafted website or an HTTP URL with a redirect.
CVE-2023-5215 1 Redhat 3 Advanced Virtualization, Enterprise Linux, Libnbd 2025-03-15 5.3 Medium
A flaw was found in libnbd. A server can reply with a block size larger than 2^63 (the NBD spec states the size is a 64-bit unsigned value). This issue could lead to an application crash or other unintended behavior for NBD clients that doesn't treat the return value of the nbd_get_size() function correctly.
CVE-2025-0754 1 Redhat 1 Service Mesh 2025-03-15 4.3 Medium
The vulnerability was found in OpenShift Service Mesh 2.6.3 and 2.5.6. This issue occurs due to improper sanitization of HTTP headers by Envoy, particularly the x-forwarded-for header. This lack of sanitization can allow attackers to inject malicious payloads into service mesh logs, leading to log injection and spoofing attacks. Such injections can mislead logging mechanisms, enabling attackers to manipulate log entries or execute reflected cross-site scripting (XSS) attacks.
CVE-2025-0752 1 Redhat 1 Service Mesh 2025-03-15 6.3 Medium
A flaw was found in OpenShift Service Mesh 2.6.3 and 2.5.6. Rate-limiter avoidance, access-control bypass, CPU and memory exhaustion, and replay attacks may be possible due to improper HTTP header sanitization in Envoy.
CVE-2025-0750 1 Redhat 1 Openshift 2025-03-15 6.6 Medium
A vulnerability was found in CRI-O. A path traversal issue in the log management functions (UnMountPodLogs and LinkContainerLogs) may allow an attacker with permissions to create and delete Pods to unmount arbitrary host paths, leading to node-level denial of service by unmounting critical system directories.
CVE-2024-12401 1 Redhat 8 Cert Manager, Cryostat, Hybrid Cloud Gateway and 5 more 2025-03-15 4.4 Medium
A flaw was found in the cert-manager package. This flaw allows an attacker who can modify PEM data that the cert-manager reads, for example, in a Secret resource, to use large amounts of CPU in the cert-manager controller pod to effectively create a denial-of-service (DoS) vector for the cert-manager in the cluster.
CVE-2024-4028 1 Redhat 2 Build Keycloak, Red Hat Single Sign On 2025-03-15 3.8 Low
A vulnerability was found in Keycloak. This issue may allow a privileged attacker to use a malicious payload as the permission while creating items (Resource and Permissions) from the admin console, leading to a stored cross-site scripting (XSS) attack.
CVE-2024-1726 1 Redhat 1 Quarkus 2025-03-15 5.3 Medium
A flaw was discovered in the RESTEasy Reactive implementation in Quarkus. Due to security checks for some JAX-RS endpoints being performed after serialization, more processing resources are consumed while the HTTP request is checked. In certain configurations, if an attacker has knowledge of any POST, PUT, or PATCH request paths, they can potentially identify vulnerable endpoints and trigger excessive resource usage as the endpoints process the requests. This can result in a denial of service.
CVE-2024-1722 1 Redhat 3 Build Keycloak, Keycloak, Red Hat Single Sign On 2025-03-15 3.7 Low
A flaw was found in Keycloak. In certain conditions, this issue may allow a remote unauthenticated attacker to block other accounts from logging in.
CVE-2023-6841 1 Redhat 7 Jboss Enterprise Bpms Platform, Jboss Fuse, Keycloak and 4 more 2025-03-15 7.5 High
A denial of service vulnerability was found in keycloak where the amount of attributes per object is not limited,an attacker by sending repeated HTTP requests could cause a resource exhaustion when the application send back rows with long attribute values.
CVE-2023-6717 1 Redhat 15 Amq Broker, Build Keycloak, Jboss Data Grid and 12 more 2025-03-15 6 Medium
A flaw was found in the SAML client registration in Keycloak that could allow an administrator to register malicious JavaScript URIs as Assertion Consumer Service POST Binding URLs (ACS), posing a Cross-Site Scripting (XSS) risk. This issue may allow a malicious admin in one realm or a client with registration access to target users in different realms or applications, executing arbitrary JavaScript in their contexts upon form submission. This can enable unauthorized access and harmful actions, compromising the confidentiality, integrity, and availability of the complete KC instance.
CVE-2023-6563 1 Redhat 9 Build Keycloak, Enterprise Linux, Keycloak and 6 more 2025-03-15 7.7 High
An unconstrained memory consumption vulnerability was discovered in Keycloak. It can be triggered in environments which have millions of offline tokens (> 500,000 users with each having at least 2 saved sessions). If an attacker creates two or more user sessions and then open the "consents" tab of the admin User Interface, the UI attempts to load a huge number of offline client sessions leading to excessive memory and CPU consumption which could potentially crash the entire system.
CVE-2025-26465 1 Redhat 2 Enterprise Linux, Openshift 2025-03-15 6.8 Medium
A vulnerability was found in OpenSSH when the VerifyHostKeyDNS option is enabled. A machine-in-the-middle attack can be performed by a malicious machine impersonating a legit server. This issue occurs due to how OpenSSH mishandles error codes in specific conditions when verifying the host key. For an attack to be considered successful, the attacker needs to manage to exhaust the client's memory resource first, turning the attack complexity high.
CVE-2025-1118 1 Redhat 2 Enterprise Linux, Openshift 2025-03-15 4.4 Medium
A flaw was found in grub2. Grub's dump command is not blocked when grub is in lockdown mode, which allows the user to read any memory information, and an attacker may leverage this in order to extract signatures, salts, and other sensitive information from the memory.