Filtered by CWE-667
Total 468 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2024-35990 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dma: xilinx_dpdma: Fix locking There are several places where either chan->lock or chan->vchan.lock was not held. Add appropriate locking. This fixes lockdep warnings like [ 31.077578] ------------[ cut here ]------------ [ 31.077831] WARNING: CPU: 2 PID: 40 at drivers/dma/xilinx/xilinx_dpdma.c:834 xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.077953] Modules linked in: [ 31.078019] CPU: 2 PID: 40 Comm: kworker/u12:1 Not tainted 6.6.20+ #98 [ 31.078102] Hardware name: xlnx,zynqmp (DT) [ 31.078169] Workqueue: events_unbound deferred_probe_work_func [ 31.078272] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--) [ 31.078377] pc : xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.078473] lr : xilinx_dpdma_chan_queue_transfer+0x270/0x5e0 [ 31.078550] sp : ffffffc083bb2e10 [ 31.078590] x29: ffffffc083bb2e10 x28: 0000000000000000 x27: ffffff880165a168 [ 31.078754] x26: ffffff880164e920 x25: ffffff880164eab8 x24: ffffff880164d480 [ 31.078920] x23: ffffff880165a148 x22: ffffff880164e988 x21: 0000000000000000 [ 31.079132] x20: ffffffc082aa3000 x19: ffffff880164e880 x18: 0000000000000000 [ 31.079295] x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000 [ 31.079453] x14: 0000000000000000 x13: ffffff8802263dc0 x12: 0000000000000001 [ 31.079613] x11: 0001ffc083bb2e34 x10: 0001ff880164e98f x9 : 0001ffc082aa3def [ 31.079824] x8 : 0001ffc082aa3dec x7 : 0000000000000000 x6 : 0000000000000516 [ 31.079982] x5 : ffffffc7f8d43000 x4 : ffffff88003c9c40 x3 : ffffffffffffffff [ 31.080147] x2 : ffffffc7f8d43000 x1 : 00000000000000c0 x0 : 0000000000000000 [ 31.080307] Call trace: [ 31.080340] xilinx_dpdma_chan_queue_transfer+0x274/0x5e0 [ 31.080518] xilinx_dpdma_issue_pending+0x11c/0x120 [ 31.080595] zynqmp_disp_layer_update+0x180/0x3ac [ 31.080712] zynqmp_dpsub_plane_atomic_update+0x11c/0x21c [ 31.080825] drm_atomic_helper_commit_planes+0x20c/0x684 [ 31.080951] drm_atomic_helper_commit_tail+0x5c/0xb0 [ 31.081139] commit_tail+0x234/0x294 [ 31.081246] drm_atomic_helper_commit+0x1f8/0x210 [ 31.081363] drm_atomic_commit+0x100/0x140 [ 31.081477] drm_client_modeset_commit_atomic+0x318/0x384 [ 31.081634] drm_client_modeset_commit_locked+0x8c/0x24c [ 31.081725] drm_client_modeset_commit+0x34/0x5c [ 31.081812] __drm_fb_helper_restore_fbdev_mode_unlocked+0x104/0x168 [ 31.081899] drm_fb_helper_set_par+0x50/0x70 [ 31.081971] fbcon_init+0x538/0xc48 [ 31.082047] visual_init+0x16c/0x23c [ 31.082207] do_bind_con_driver.isra.0+0x2d0/0x634 [ 31.082320] do_take_over_console+0x24c/0x33c [ 31.082429] do_fbcon_takeover+0xbc/0x1b0 [ 31.082503] fbcon_fb_registered+0x2d0/0x34c [ 31.082663] register_framebuffer+0x27c/0x38c [ 31.082767] __drm_fb_helper_initial_config_and_unlock+0x5c0/0x91c [ 31.082939] drm_fb_helper_initial_config+0x50/0x74 [ 31.083012] drm_fbdev_dma_client_hotplug+0xb8/0x108 [ 31.083115] drm_client_register+0xa0/0xf4 [ 31.083195] drm_fbdev_dma_setup+0xb0/0x1cc [ 31.083293] zynqmp_dpsub_drm_init+0x45c/0x4e0 [ 31.083431] zynqmp_dpsub_probe+0x444/0x5e0 [ 31.083616] platform_probe+0x8c/0x13c [ 31.083713] really_probe+0x258/0x59c [ 31.083793] __driver_probe_device+0xc4/0x224 [ 31.083878] driver_probe_device+0x70/0x1c0 [ 31.083961] __device_attach_driver+0x108/0x1e0 [ 31.084052] bus_for_each_drv+0x9c/0x100 [ 31.084125] __device_attach+0x100/0x298 [ 31.084207] device_initial_probe+0x14/0x20 [ 31.084292] bus_probe_device+0xd8/0xdc [ 31.084368] deferred_probe_work_func+0x11c/0x180 [ 31.084451] process_one_work+0x3ac/0x988 [ 31.084643] worker_thread+0x398/0x694 [ 31.084752] kthread+0x1bc/0x1c0 [ 31.084848] ret_from_fork+0x10/0x20 [ 31.084932] irq event stamp: 64549 [ 31.084970] hardirqs last enabled at (64548): [<ffffffc081adf35c>] _raw_spin_unlock_irqrestore+0x80/0x90 [ 31.085157] ---truncated---
CVE-2024-27021 2 Fedoraproject, Linux 2 Fedora, Linux Kernel 2024-12-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: r8169: fix LED-related deadlock on module removal Binding devm_led_classdev_register() to the netdev is problematic because on module removal we get a RTNL-related deadlock. Fix this by avoiding the device-managed LED functions. Note: We can safely call led_classdev_unregister() for a LED even if registering it failed, because led_classdev_unregister() detects this and is a no-op in this case.
CVE-2024-27014 3 Fedoraproject, Linux, Redhat 4 Fedora, Linux Kernel, Enterprise Linux and 1 more 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: Prevent deadlock while disabling aRFS When disabling aRFS under the `priv->state_lock`, any scheduled aRFS works are canceled using the `cancel_work_sync` function, which waits for the work to end if it has already started. However, while waiting for the work handler, the handler will try to acquire the `state_lock` which is already acquired. The worker acquires the lock to delete the rules if the state is down, which is not the worker's responsibility since disabling aRFS deletes the rules. Add an aRFS state variable, which indicates whether the aRFS is enabled and prevent adding rules when the aRFS is disabled. Kernel log: ====================================================== WARNING: possible circular locking dependency detected 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Tainted: G I ------------------------------------------------------ ethtool/386089 is trying to acquire lock: ffff88810f21ce68 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}, at: __flush_work+0x74/0x4e0 but task is already holding lock: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&priv->state_lock){+.+.}-{3:3}: __mutex_lock+0x80/0xc90 arfs_handle_work+0x4b/0x3b0 [mlx5_core] process_one_work+0x1dc/0x4a0 worker_thread+0x1bf/0x3c0 kthread+0xd7/0x100 ret_from_fork+0x2d/0x50 ret_from_fork_asm+0x11/0x20 -> #0 ((work_completion)(&rule->arfs_work)){+.+.}-{0:0}: __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 __flush_work+0x7a/0x4e0 __cancel_work_timer+0x131/0x1c0 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 netlink_rcv_skb+0x54/0x100 genl_rcv+0x24/0x40 netlink_unicast+0x1a1/0x270 netlink_sendmsg+0x214/0x460 __sock_sendmsg+0x38/0x60 __sys_sendto+0x113/0x170 __x64_sys_sendto+0x20/0x30 do_syscall_64+0x40/0xe0 entry_SYSCALL_64_after_hwframe+0x46/0x4e other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); lock(&priv->state_lock); lock((work_completion)(&rule->arfs_work)); *** DEADLOCK *** 3 locks held by ethtool/386089: #0: ffffffff82ea7210 (cb_lock){++++}-{3:3}, at: genl_rcv+0x15/0x40 #1: ffffffff82e94c88 (rtnl_mutex){+.+.}-{3:3}, at: ethnl_default_set_doit+0xd3/0x240 #2: ffff8884a1808cc0 (&priv->state_lock){+.+.}-{3:3}, at: mlx5e_ethtool_set_channels+0x53/0x200 [mlx5_core] stack backtrace: CPU: 15 PID: 386089 Comm: ethtool Tainted: G I 6.7.0-rc4_net_next_mlx5_5483eb2 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.13.0-0-gf21b5a4aeb02-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x60/0xa0 check_noncircular+0x144/0x160 __lock_acquire+0x17b4/0x2c80 lock_acquire+0xd0/0x2b0 ? __flush_work+0x74/0x4e0 ? save_trace+0x3e/0x360 ? __flush_work+0x74/0x4e0 __flush_work+0x7a/0x4e0 ? __flush_work+0x74/0x4e0 ? __lock_acquire+0xa78/0x2c80 ? lock_acquire+0xd0/0x2b0 ? mark_held_locks+0x49/0x70 __cancel_work_timer+0x131/0x1c0 ? mark_held_locks+0x49/0x70 arfs_del_rules+0x143/0x1e0 [mlx5_core] mlx5e_arfs_disable+0x1b/0x30 [mlx5_core] mlx5e_ethtool_set_channels+0xcb/0x200 [mlx5_core] ethnl_set_channels+0x28f/0x3b0 ethnl_default_set_doit+0xec/0x240 genl_family_rcv_msg_doit+0xd0/0x120 genl_rcv_msg+0x188/0x2c0 ? ethn ---truncated---
CVE-2024-26987 3 Fedoraproject, Linux, Redhat 3 Fedora, Linux Kernel, Enterprise Linux 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mm/memory-failure: fix deadlock when hugetlb_optimize_vmemmap is enabled When I did hard offline test with hugetlb pages, below deadlock occurs: ====================================================== WARNING: possible circular locking dependency detected 6.8.0-11409-gf6cef5f8c37f #1 Not tainted ------------------------------------------------------ bash/46904 is trying to acquire lock: ffffffffabe68910 (cpu_hotplug_lock){++++}-{0:0}, at: static_key_slow_dec+0x16/0x60 but task is already holding lock: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (pcp_batch_high_lock){+.+.}-{3:3}: __mutex_lock+0x6c/0x770 page_alloc_cpu_online+0x3c/0x70 cpuhp_invoke_callback+0x397/0x5f0 __cpuhp_invoke_callback_range+0x71/0xe0 _cpu_up+0xeb/0x210 cpu_up+0x91/0xe0 cpuhp_bringup_mask+0x49/0xb0 bringup_nonboot_cpus+0xb7/0xe0 smp_init+0x25/0xa0 kernel_init_freeable+0x15f/0x3e0 kernel_init+0x15/0x1b0 ret_from_fork+0x2f/0x50 ret_from_fork_asm+0x1a/0x30 -> #0 (cpu_hotplug_lock){++++}-{0:0}: __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(pcp_batch_high_lock); lock(cpu_hotplug_lock); lock(pcp_batch_high_lock); rlock(cpu_hotplug_lock); *** DEADLOCK *** 5 locks held by bash/46904: #0: ffff98f6c3bb23f0 (sb_writers#5){.+.+}-{0:0}, at: ksys_write+0x64/0xe0 #1: ffff98f6c328e488 (&of->mutex){+.+.}-{3:3}, at: kernfs_fop_write_iter+0xf8/0x1d0 #2: ffff98ef83b31890 (kn->active#113){.+.+}-{0:0}, at: kernfs_fop_write_iter+0x100/0x1d0 #3: ffffffffabf9db48 (mf_mutex){+.+.}-{3:3}, at: memory_failure+0x44/0xc70 #4: ffffffffabf92ea8 (pcp_batch_high_lock){+.+.}-{3:3}, at: zone_pcp_disable+0x16/0x40 stack backtrace: CPU: 10 PID: 46904 Comm: bash Kdump: loaded Not tainted 6.8.0-11409-gf6cef5f8c37f #1 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.14.0-0-g155821a1990b-prebuilt.qemu.org 04/01/2014 Call Trace: <TASK> dump_stack_lvl+0x68/0xa0 check_noncircular+0x129/0x140 __lock_acquire+0x1298/0x1cd0 lock_acquire+0xc0/0x2b0 cpus_read_lock+0x2a/0xc0 static_key_slow_dec+0x16/0x60 __hugetlb_vmemmap_restore_folio+0x1b9/0x200 dissolve_free_huge_page+0x211/0x260 __page_handle_poison+0x45/0xc0 memory_failure+0x65e/0xc70 hard_offline_page_store+0x55/0xa0 kernfs_fop_write_iter+0x12c/0x1d0 vfs_write+0x387/0x550 ksys_write+0x64/0xe0 do_syscall_64+0xca/0x1e0 entry_SYSCALL_64_after_hwframe+0x6d/0x75 RIP: 0033:0x7fc862314887 Code: 10 00 f7 d8 64 89 02 48 c7 c0 ff ff ff ff eb b7 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 01 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 51 c3 48 83 ec 28 48 89 54 24 18 48 89 74 24 RSP: 002b:00007fff19311268 EFLAGS: 00000246 ORIG_RAX: 0000000000000001 RAX: ffffffffffffffda RBX: 000000000000000c RCX: 00007fc862314887 RDX: 000000000000000c RSI: 000056405645fe10 RDI: 0000000000000001 RBP: 000056405645fe10 R08: 00007fc8623d1460 R09: 000000007fffffff R10: 0000000000000000 R11: 0000000000000246 R12: 000000000000000c R13: 00007fc86241b780 R14: 00007fc862417600 R15: 00007fc862416a00 In short, below scene breaks the ---truncated---
CVE-2024-26934 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in usb_deauthorize_interface() Among the attribute file callback routines in drivers/usb/core/sysfs.c, the interface_authorized_store() function is the only one which acquires a device lock on an ancestor device: It calls usb_deauthorize_interface(), which locks the interface's parent USB device. The will lead to deadlock if another process already owns that lock and tries to remove the interface, whether through a configuration change or because the device has been disconnected. As part of the removal procedure, device_del() waits for all ongoing sysfs attribute callbacks to complete. But usb_deauthorize_interface() can't complete until the device lock has been released, and the lock won't be released until the removal has finished. The mechanism provided by sysfs to prevent this kind of deadlock is to use the sysfs_break_active_protection() function, which tells sysfs not to wait for the attribute callback. Reported-and-tested by: Yue Sun <samsun1006219@gmail.com> Reported by: xingwei lee <xrivendell7@gmail.com>
CVE-2024-26933 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 7.8 High
In the Linux kernel, the following vulnerability has been resolved: USB: core: Fix deadlock in port "disable" sysfs attribute The show and store callback routines for the "disable" sysfs attribute file in port.c acquire the device lock for the port's parent hub device. This can cause problems if another process has locked the hub to remove it or change its configuration: Removing the hub or changing its configuration requires the hub interface to be removed, which requires the port device to be removed, and device_del() waits until all outstanding sysfs attribute callbacks for the ports have returned. The lock can't be released until then. But the disable_show() or disable_store() routine can't return until after it has acquired the lock. The resulting deadlock can be avoided by calling sysfs_break_active_protection(). This will cause the sysfs core not to wait for the attribute's callback routine to return, allowing the removal to proceed. The disadvantage is that after making this call, there is no guarantee that the hub structure won't be deallocated at any moment. To prevent this, we have to acquire a reference to it first by calling hub_get().
CVE-2024-26925 1 Redhat 2 Enterprise Linux, Rhel Eus 2024-12-19 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: nf_tables: release mutex after nft_gc_seq_end from abort path The commit mutex should not be released during the critical section between nft_gc_seq_begin() and nft_gc_seq_end(), otherwise, async GC worker could collect expired objects and get the released commit lock within the same GC sequence. nf_tables_module_autoload() temporarily releases the mutex to load module dependencies, then it goes back to replay the transaction again. Move it at the end of the abort phase after nft_gc_seq_end() is called.
CVE-2024-26899 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block: fix deadlock between bd_link_disk_holder and partition scan 'open_mutex' of gendisk is used to protect open/close block devices. But in bd_link_disk_holder(), it is used to protect the creation of symlink between holding disk and slave bdev, which introduces some issues. When bd_link_disk_holder() is called, the driver is usually in the process of initialization/modification and may suspend submitting io. At this time, any io hold 'open_mutex', such as scanning partitions, can cause deadlocks. For example, in raid: T1 T2 bdev_open_by_dev lock open_mutex [1] ... efi_partition ... md_submit_bio md_ioctl mddev_syspend -> suspend all io md_add_new_disk bind_rdev_to_array bd_link_disk_holder try lock open_mutex [2] md_handle_request -> wait mddev_resume T1 scan partition, T2 add a new device to raid. T1 waits for T2 to resume mddev, but T2 waits for open_mutex held by T1. Deadlock occurs. Fix it by introducing a local mutex 'blk_holder_mutex' to replace 'open_mutex'.
CVE-2024-26605 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PCI/ASPM: Fix deadlock when enabling ASPM A last minute revert in 6.7-final introduced a potential deadlock when enabling ASPM during probe of Qualcomm PCIe controllers as reported by lockdep: ============================================ WARNING: possible recursive locking detected 6.7.0 #40 Not tainted -------------------------------------------- kworker/u16:5/90 is trying to acquire lock: ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pcie_aspm_pm_state_change+0x58/0xdc but task is already holding lock: ffffacfa78ced000 (pci_bus_sem){++++}-{3:3}, at: pci_walk_bus+0x34/0xbc other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(pci_bus_sem); lock(pci_bus_sem); *** DEADLOCK *** Call trace: print_deadlock_bug+0x25c/0x348 __lock_acquire+0x10a4/0x2064 lock_acquire+0x1e8/0x318 down_read+0x60/0x184 pcie_aspm_pm_state_change+0x58/0xdc pci_set_full_power_state+0xa8/0x114 pci_set_power_state+0xc4/0x120 qcom_pcie_enable_aspm+0x1c/0x3c [pcie_qcom] pci_walk_bus+0x64/0xbc qcom_pcie_host_post_init_2_7_0+0x28/0x34 [pcie_qcom] The deadlock can easily be reproduced on machines like the Lenovo ThinkPad X13s by adding a delay to increase the race window during asynchronous probe where another thread can take a write lock. Add a new pci_set_power_state_locked() and associated helper functions that can be called with the PCI bus semaphore held to avoid taking the read lock twice.
CVE-2023-52774 2024-12-19 4.4 Medium
In the Linux kernel, the following vulnerability has been resolved: s390/dasd: protect device queue against concurrent access In dasd_profile_start() the amount of requests on the device queue are counted. The access to the device queue is unprotected against concurrent access. With a lot of parallel I/O, especially with alias devices enabled, the device queue can change while dasd_profile_start() is accessing the queue. In the worst case this leads to a kernel panic due to incorrect pointer accesses. Fix this by taking the device lock before accessing the queue and counting the requests. Additionally the check for a valid profile data pointer can be done earlier to avoid unnecessary locking in a hot path.
CVE-2023-52668 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: zoned: fix lock ordering in btrfs_zone_activate() The btrfs CI reported a lockdep warning as follows by running generic generic/129. WARNING: possible circular locking dependency detected 6.7.0-rc5+ #1 Not tainted ------------------------------------------------------ kworker/u5:5/793427 is trying to acquire lock: ffff88813256d028 (&cache->lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x5e/0x130 but task is already holding lock: ffff88810a23a318 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}, at: btrfs_zone_finish_one_bg+0x34/0x130 which lock already depends on the new lock. the existing dependency chain (in reverse order) is: -> #1 (&fs_info->zone_active_bgs_lock){+.+.}-{2:2}: ... -> #0 (&cache->lock){+.+.}-{2:2}: ... This is because we take fs_info->zone_active_bgs_lock after a block_group's lock in btrfs_zone_activate() while doing the opposite in other places. Fix the issue by expanding the fs_info->zone_active_bgs_lock's critical section and taking it before a block_group's lock.
CVE-2023-52615 2 Linux, Redhat 3 Linux Kernel, Enterprise Linux, Rhel Eus 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: hwrng: core - Fix page fault dead lock on mmap-ed hwrng There is a dead-lock in the hwrng device read path. This triggers when the user reads from /dev/hwrng into memory also mmap-ed from /dev/hwrng. The resulting page fault triggers a recursive read which then dead-locks. Fix this by using a stack buffer when calling copy_to_user.
CVE-2023-52595 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: wifi: rt2x00: restart beacon queue when hardware reset When a hardware reset is triggered, all registers are reset, so all queues are forced to stop in hardware interface. However, mac80211 will not automatically stop the queue. If we don't manually stop the beacon queue, the queue will be deadlocked and unable to start again. This patch fixes the issue where Apple devices cannot connect to the AP after calling ieee80211_restart_hw().
CVE-2023-52516 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: dma-debug: don't call __dma_entry_alloc_check_leak() under free_entries_lock __dma_entry_alloc_check_leak() calls into printk -> serial console output (qcom geni) and grabs port->lock under free_entries_lock spin lock, which is a reverse locking dependency chain as qcom_geni IRQ handler can call into dma-debug code and grab free_entries_lock under port->lock. Move __dma_entry_alloc_check_leak() call out of free_entries_lock scope so that we don't acquire serial console's port->lock under it. Trimmed-down lockdep splat: The existing dependency chain (in reverse order) is: -> #2 (free_entries_lock){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 dma_entry_alloc+0x38/0x110 debug_dma_map_page+0x60/0xf8 dma_map_page_attrs+0x1e0/0x230 dma_map_single_attrs.constprop.0+0x6c/0xc8 geni_se_rx_dma_prep+0x40/0xcc qcom_geni_serial_isr+0x310/0x510 __handle_irq_event_percpu+0x110/0x244 handle_irq_event_percpu+0x20/0x54 handle_irq_event+0x50/0x88 handle_fasteoi_irq+0xa4/0xcc handle_irq_desc+0x28/0x40 generic_handle_domain_irq+0x24/0x30 gic_handle_irq+0xc4/0x148 do_interrupt_handler+0xa4/0xb0 el1_interrupt+0x34/0x64 el1h_64_irq_handler+0x18/0x24 el1h_64_irq+0x64/0x68 arch_local_irq_enable+0x4/0x8 ____do_softirq+0x18/0x24 ... -> #1 (&port_lock_key){-.-.}-{2:2}: _raw_spin_lock_irqsave+0x60/0x80 qcom_geni_serial_console_write+0x184/0x1dc console_flush_all+0x344/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 register_console+0x230/0x38c uart_add_one_port+0x338/0x494 qcom_geni_serial_probe+0x390/0x424 platform_probe+0x70/0xc0 really_probe+0x148/0x280 __driver_probe_device+0xfc/0x114 driver_probe_device+0x44/0x100 __device_attach_driver+0x64/0xdc bus_for_each_drv+0xb0/0xd8 __device_attach+0xe4/0x140 device_initial_probe+0x1c/0x28 bus_probe_device+0x44/0xb0 device_add+0x538/0x668 of_device_add+0x44/0x50 of_platform_device_create_pdata+0x94/0xc8 of_platform_bus_create+0x270/0x304 of_platform_populate+0xac/0xc4 devm_of_platform_populate+0x60/0xac geni_se_probe+0x154/0x160 platform_probe+0x70/0xc0 ... -> #0 (console_owner){-...}-{0:0}: __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 console_unlock+0x94/0xf0 vprintk_emit+0x238/0x24c vprintk_default+0x3c/0x48 vprintk+0xb4/0xbc _printk+0x68/0x90 dma_entry_alloc+0xb4/0x110 debug_dma_map_sg+0xdc/0x2f8 __dma_map_sg_attrs+0xac/0xe4 dma_map_sgtable+0x30/0x4c get_pages+0x1d4/0x1e4 [msm] msm_gem_pin_pages_locked+0x38/0xac [msm] msm_gem_pin_vma_locked+0x58/0x88 [msm] msm_ioctl_gem_submit+0xde4/0x13ac [msm] drm_ioctl_kernel+0xe0/0x15c drm_ioctl+0x2e8/0x3f4 vfs_ioctl+0x30/0x50 ... Chain exists of: console_owner --> &port_lock_key --> free_entries_lock Possible unsafe locking scenario: CPU0 CPU1 ---- ---- lock(free_entries_lock); lock(&port_lock_key); lock(free_entries_lock); lock(console_owner); *** DEADLOCK *** Call trace: dump_backtrace+0xb4/0xf0 show_stack+0x20/0x30 dump_stack_lvl+0x60/0x84 dump_stack+0x18/0x24 print_circular_bug+0x1cc/0x234 check_noncircular+0x78/0xac __lock_acquire+0xdf8/0x109c lock_acquire+0x234/0x284 console_flush_all+0x330/0x454 consol ---truncated---
CVE-2023-52498 2 Linux, Redhat 2 Linux Kernel, Enterprise Linux 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: PM: sleep: Fix possible deadlocks in core system-wide PM code It is reported that in low-memory situations the system-wide resume core code deadlocks, because async_schedule_dev() executes its argument function synchronously if it cannot allocate memory (and not only in that case) and that function attempts to acquire a mutex that is already held. Executing the argument function synchronously from within dpm_async_fn() may also be problematic for ordering reasons (it may cause a consumer device's resume callback to be invoked before a requisite supplier device's one, for example). Address this by changing the code in question to use async_schedule_dev_nocall() for scheduling the asynchronous execution of device suspend and resume functions and to directly run them synchronously if async_schedule_dev_nocall() returns false.
CVE-2023-52493 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: bus: mhi: host: Drop chan lock before queuing buffers Ensure read and write locks for the channel are not taken in succession by dropping the read lock from parse_xfer_event() such that a callback given to client can potentially queue buffers and acquire the write lock in that process. Any queueing of buffers should be done without channel read lock acquired as it can result in multiple locks and a soft lockup. [mani: added fixes tag and cc'ed stable]
CVE-2023-52484 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: iommu/arm-smmu-v3: Fix soft lockup triggered by arm_smmu_mm_invalidate_range When running an SVA case, the following soft lockup is triggered: -------------------------------------------------------------------- watchdog: BUG: soft lockup - CPU#244 stuck for 26s! pstate: 83400009 (Nzcv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=--) pc : arm_smmu_cmdq_issue_cmdlist+0x178/0xa50 lr : arm_smmu_cmdq_issue_cmdlist+0x150/0xa50 sp : ffff8000d83ef290 x29: ffff8000d83ef290 x28: 000000003b9aca00 x27: 0000000000000000 x26: ffff8000d83ef3c0 x25: da86c0812194a0e8 x24: 0000000000000000 x23: 0000000000000040 x22: ffff8000d83ef340 x21: ffff0000c63980c0 x20: 0000000000000001 x19: ffff0000c6398080 x18: 0000000000000000 x17: 0000000000000000 x16: 0000000000000000 x15: ffff3000b4a3bbb0 x14: ffff3000b4a30888 x13: ffff3000b4a3cf60 x12: 0000000000000000 x11: 0000000000000000 x10: 0000000000000000 x9 : ffffc08120e4d6bc x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000048cfa x5 : 0000000000000000 x4 : 0000000000000001 x3 : 000000000000000a x2 : 0000000080000000 x1 : 0000000000000000 x0 : 0000000000000001 Call trace: arm_smmu_cmdq_issue_cmdlist+0x178/0xa50 __arm_smmu_tlb_inv_range+0x118/0x254 arm_smmu_tlb_inv_range_asid+0x6c/0x130 arm_smmu_mm_invalidate_range+0xa0/0xa4 __mmu_notifier_invalidate_range_end+0x88/0x120 unmap_vmas+0x194/0x1e0 unmap_region+0xb4/0x144 do_mas_align_munmap+0x290/0x490 do_mas_munmap+0xbc/0x124 __vm_munmap+0xa8/0x19c __arm64_sys_munmap+0x28/0x50 invoke_syscall+0x78/0x11c el0_svc_common.constprop.0+0x58/0x1c0 do_el0_svc+0x34/0x60 el0_svc+0x2c/0xd4 el0t_64_sync_handler+0x114/0x140 el0t_64_sync+0x1a4/0x1a8 -------------------------------------------------------------------- Note that since 6.6-rc1 the arm_smmu_mm_invalidate_range above is renamed to "arm_smmu_mm_arch_invalidate_secondary_tlbs", yet the problem remains. The commit 06ff87bae8d3 ("arm64: mm: remove unused functions and variable protoypes") fixed a similar lockup on the CPU MMU side. Yet, it can occur to SMMU too, since arm_smmu_mm_arch_invalidate_secondary_tlbs() is called typically next to MMU tlb flush function, e.g. tlb_flush_mmu_tlbonly { tlb_flush { __flush_tlb_range { // check MAX_TLBI_OPS } } mmu_notifier_arch_invalidate_secondary_tlbs { arm_smmu_mm_arch_invalidate_secondary_tlbs { // does not check MAX_TLBI_OPS } } } Clone a CMDQ_MAX_TLBI_OPS from the MAX_TLBI_OPS in tlbflush.h, since in an SVA case SMMU uses the CPU page table, so it makes sense to align with the tlbflush code. Then, replace per-page TLBI commands with a single per-asid TLBI command, if the request size hits this threshold.
CVE-2023-52456 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: imx: fix tx statemachine deadlock When using the serial port as RS485 port, the tx statemachine is used to control the RTS pin to drive the RS485 transceiver TX_EN pin. When the TTY port is closed in the middle of a transmission (for instance during userland application crash), imx_uart_shutdown disables the interface and disables the Transmission Complete interrupt. afer that, imx_uart_stop_tx bails on an incomplete transmission, to be retriggered by the TC interrupt. This interrupt is disabled and therefore the tx statemachine never transitions out of SEND. The statemachine is in deadlock now, and the TX_EN remains low, making the interface useless. imx_uart_stop_tx now checks for incomplete transmission AND whether TC interrupts are enabled before bailing to be retriggered. This makes sure the state machine handling is reached, and is properly set to WAIT_AFTER_SEND.
CVE-2022-49018 1 Linux 1 Linux Kernel 2024-12-19 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: mptcp: fix sleep in atomic at close time Matt reported a splat at msk close time: BUG: sleeping function called from invalid context at net/mptcp/protocol.c:2877 in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 155, name: packetdrill preempt_count: 201, expected: 0 RCU nest depth: 0, expected: 0 4 locks held by packetdrill/155: #0: ffff888001536990 (&sb->s_type->i_mutex_key#6){+.+.}-{3:3}, at: __sock_release (net/socket.c:650) #1: ffff88800b498130 (sk_lock-AF_INET){+.+.}-{0:0}, at: mptcp_close (net/mptcp/protocol.c:2973) #2: ffff88800b49a130 (sk_lock-AF_INET/1){+.+.}-{0:0}, at: __mptcp_close_ssk (net/mptcp/protocol.c:2363) #3: ffff88800b49a0b0 (slock-AF_INET){+...}-{2:2}, at: __lock_sock_fast (include/net/sock.h:1820) Preemption disabled at: 0x0 CPU: 1 PID: 155 Comm: packetdrill Not tainted 6.1.0-rc5 #365 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.15.0-1 04/01/2014 Call Trace: <TASK> dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4)) __might_resched.cold (kernel/sched/core.c:9891) __mptcp_destroy_sock (include/linux/kernel.h:110) __mptcp_close (net/mptcp/protocol.c:2959) mptcp_subflow_queue_clean (include/net/sock.h:1777) __mptcp_close_ssk (net/mptcp/protocol.c:2363) mptcp_destroy_common (net/mptcp/protocol.c:3170) mptcp_destroy (include/net/sock.h:1495) __mptcp_destroy_sock (net/mptcp/protocol.c:2886) __mptcp_close (net/mptcp/protocol.c:2959) mptcp_close (net/mptcp/protocol.c:2974) inet_release (net/ipv4/af_inet.c:432) __sock_release (net/socket.c:651) sock_close (net/socket.c:1367) __fput (fs/file_table.c:320) task_work_run (kernel/task_work.c:181 (discriminator 1)) exit_to_user_mode_prepare (include/linux/resume_user_mode.h:49) syscall_exit_to_user_mode (kernel/entry/common.c:130) do_syscall_64 (arch/x86/entry/common.c:87) entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) We can't call mptcp_close under the 'fast' socket lock variant, replace it with a sock_lock_nested() as the relevant code is already under the listening msk socket lock protection.
CVE-2022-48937 1 Linux 1 Linux Kernel 2024-12-19 3.3 Low
In the Linux kernel, the following vulnerability has been resolved: io_uring: add a schedule point in io_add_buffers() Looping ~65535 times doing kmalloc() calls can trigger soft lockups, especially with DEBUG features (like KASAN). [ 253.536212] watchdog: BUG: soft lockup - CPU#64 stuck for 26s! [b219417889:12575] [ 253.544433] Modules linked in: vfat fat i2c_mux_pca954x i2c_mux spidev cdc_acm xhci_pci xhci_hcd sha3_generic gq(O) [ 253.544451] CPU: 64 PID: 12575 Comm: b219417889 Tainted: G S O 5.17.0-smp-DEV #801 [ 253.544457] RIP: 0010:kernel_text_address (./include/asm-generic/sections.h:192 ./include/linux/kallsyms.h:29 kernel/extable.c:67 kernel/extable.c:98) [ 253.544464] Code: 0f 93 c0 48 c7 c1 e0 63 d7 a4 48 39 cb 0f 92 c1 20 c1 0f b6 c1 5b 5d c3 90 0f 1f 44 00 00 55 48 89 e5 41 57 41 56 53 48 89 fb <48> c7 c0 00 00 80 a0 41 be 01 00 00 00 48 39 c7 72 0c 48 c7 c0 40 [ 253.544468] RSP: 0018:ffff8882d8baf4c0 EFLAGS: 00000246 [ 253.544471] RAX: 1ffff1105b175e00 RBX: ffffffffa13ef09a RCX: 00000000a13ef001 [ 253.544474] RDX: ffffffffa13ef09a RSI: ffff8882d8baf558 RDI: ffffffffa13ef09a [ 253.544476] RBP: ffff8882d8baf4d8 R08: ffff8882d8baf5e0 R09: 0000000000000004 [ 253.544479] R10: ffff8882d8baf5e8 R11: ffffffffa0d59a50 R12: ffff8882eab20380 [ 253.544481] R13: ffffffffa0d59a50 R14: dffffc0000000000 R15: 1ffff1105b175eb0 [ 253.544483] FS: 00000000016d3380(0000) GS:ffff88af48c00000(0000) knlGS:0000000000000000 [ 253.544486] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 253.544488] CR2: 00000000004af0f0 CR3: 00000002eabfa004 CR4: 00000000003706e0 [ 253.544491] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000 [ 253.544492] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400 [ 253.544494] Call Trace: [ 253.544496] <TASK> [ 253.544498] ? io_queue_sqe (fs/io_uring.c:7143) [ 253.544505] __kernel_text_address (kernel/extable.c:78) [ 253.544508] unwind_get_return_address (arch/x86/kernel/unwind_frame.c:19) [ 253.544514] arch_stack_walk (arch/x86/kernel/stacktrace.c:27) [ 253.544517] ? io_queue_sqe (fs/io_uring.c:7143) [ 253.544521] stack_trace_save (kernel/stacktrace.c:123) [ 253.544527] ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515) [ 253.544531] ? ____kasan_kmalloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:515) [ 253.544533] ? __kasan_kmalloc (mm/kasan/common.c:524) [ 253.544535] ? kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567) [ 253.544541] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828) [ 253.544544] ? __io_queue_sqe (fs/io_uring.c:?) [ 253.544551] __kasan_kmalloc (mm/kasan/common.c:524) [ 253.544553] kmem_cache_alloc_trace (./include/linux/kasan.h:270 mm/slab.c:3567) [ 253.544556] ? io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828) [ 253.544560] io_issue_sqe (fs/io_uring.c:4556 fs/io_uring.c:4589 fs/io_uring.c:6828) [ 253.544564] ? __kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469) [ 253.544567] ? __kasan_slab_alloc (mm/kasan/common.c:39 mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469) [ 253.544569] ? kmem_cache_alloc_bulk (mm/slab.h:732 mm/slab.c:3546) [ 253.544573] ? __io_alloc_req_refill (fs/io_uring.c:2078) [ 253.544578] ? io_submit_sqes (fs/io_uring.c:7441) [ 253.544581] ? __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uring.c:10096) [ 253.544584] ? __x64_sys_io_uring_enter (fs/io_uring.c:10096) [ 253.544587] ? do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80) [ 253.544590] ? entry_SYSCALL_64_after_hwframe (??:?) [ 253.544596] __io_queue_sqe (fs/io_uring.c:?) [ 253.544600] io_queue_sqe (fs/io_uring.c:7143) [ 253.544603] io_submit_sqe (fs/io_uring.c:?) [ 253.544608] io_submit_sqes (fs/io_uring.c:?) [ 253.544612] __se_sys_io_uring_enter (fs/io_uring.c:10154 fs/io_uri ---truncated---