Filtered by vendor Linux
Subscriptions
Filtered by product Linux Kernel
Subscriptions
Total
9771 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-52707 | 2 Linux, Redhat | 3 Linux Kernel, Enterprise Linux, Rhel Eus | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: sched/psi: Fix use-after-free in ep_remove_wait_queue() If a non-root cgroup gets removed when there is a thread that registered trigger and is polling on a pressure file within the cgroup, the polling waitqueue gets freed in the following path: do_rmdir cgroup_rmdir kernfs_drain_open_files cgroup_file_release cgroup_pressure_release psi_trigger_destroy However, the polling thread still has a reference to the pressure file and will access the freed waitqueue when the file is closed or upon exit: fput ep_eventpoll_release ep_free ep_remove_wait_queue remove_wait_queue This results in use-after-free as pasted below. The fundamental problem here is that cgroup_file_release() (and consequently waitqueue's lifetime) is not tied to the file's real lifetime. Using wake_up_pollfree() here might be less than ideal, but it is in line with the comment at commit 42288cb44c4b ("wait: add wake_up_pollfree()") since the waitqueue's lifetime is not tied to file's one and can be considered as another special case. While this would be fixable by somehow making cgroup_file_release() be tied to the fput(), it would require sizable refactoring at cgroups or higher layer which might be more justifiable if we identify more cases like this. BUG: KASAN: use-after-free in _raw_spin_lock_irqsave+0x60/0xc0 Write of size 4 at addr ffff88810e625328 by task a.out/4404 CPU: 19 PID: 4404 Comm: a.out Not tainted 6.2.0-rc6 #38 Hardware name: Amazon EC2 c5a.8xlarge/, BIOS 1.0 10/16/2017 Call Trace: <TASK> dump_stack_lvl+0x73/0xa0 print_report+0x16c/0x4e0 kasan_report+0xc3/0xf0 kasan_check_range+0x2d2/0x310 _raw_spin_lock_irqsave+0x60/0xc0 remove_wait_queue+0x1a/0xa0 ep_free+0x12c/0x170 ep_eventpoll_release+0x26/0x30 __fput+0x202/0x400 task_work_run+0x11d/0x170 do_exit+0x495/0x1130 do_group_exit+0x100/0x100 get_signal+0xd67/0xde0 arch_do_signal_or_restart+0x2a/0x2b0 exit_to_user_mode_prepare+0x94/0x100 syscall_exit_to_user_mode+0x20/0x40 do_syscall_64+0x52/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> Allocated by task 4404: kasan_set_track+0x3d/0x60 __kasan_kmalloc+0x85/0x90 psi_trigger_create+0x113/0x3e0 pressure_write+0x146/0x2e0 cgroup_file_write+0x11c/0x250 kernfs_fop_write_iter+0x186/0x220 vfs_write+0x3d8/0x5c0 ksys_write+0x90/0x110 do_syscall_64+0x43/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd Freed by task 4407: kasan_set_track+0x3d/0x60 kasan_save_free_info+0x27/0x40 ____kasan_slab_free+0x11d/0x170 slab_free_freelist_hook+0x87/0x150 __kmem_cache_free+0xcb/0x180 psi_trigger_destroy+0x2e8/0x310 cgroup_file_release+0x4f/0xb0 kernfs_drain_open_files+0x165/0x1f0 kernfs_drain+0x162/0x1a0 __kernfs_remove+0x1fb/0x310 kernfs_remove_by_name_ns+0x95/0xe0 cgroup_addrm_files+0x67f/0x700 cgroup_destroy_locked+0x283/0x3c0 cgroup_rmdir+0x29/0x100 kernfs_iop_rmdir+0xd1/0x140 vfs_rmdir+0xfe/0x240 do_rmdir+0x13d/0x280 __x64_sys_rmdir+0x2c/0x30 do_syscall_64+0x43/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd | ||||
CVE-2023-52706 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: gpio: sim: fix a memory leak Fix an inverted logic bug in gpio_sim_remove_hogs() that leads to GPIO hog structures never being freed. | ||||
CVE-2023-52877 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: usb: typec: tcpm: Fix NULL pointer dereference in tcpm_pd_svdm() It is possible that typec_register_partner() returns ERR_PTR on failure. When port->partner is an error, a NULL pointer dereference may occur as shown below. [91222.095236][ T319] typec port0: failed to register partner (-17) ... [91225.061491][ T319] Unable to handle kernel NULL pointer dereference at virtual address 000000000000039f [91225.274642][ T319] pc : tcpm_pd_data_request+0x310/0x13fc [91225.274646][ T319] lr : tcpm_pd_data_request+0x298/0x13fc [91225.308067][ T319] Call trace: [91225.308070][ T319] tcpm_pd_data_request+0x310/0x13fc [91225.308073][ T319] tcpm_pd_rx_handler+0x100/0x9e8 [91225.355900][ T319] kthread_worker_fn+0x178/0x58c [91225.355902][ T319] kthread+0x150/0x200 [91225.355905][ T319] ret_from_fork+0x10/0x30 Add a check for port->partner to avoid dereferencing a NULL pointer. | ||||
CVE-2023-52876 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt7629-eth: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference. | ||||
CVE-2023-52875 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt2701: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference. | ||||
CVE-2023-52873 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: clk: mediatek: clk-mt6779: Add check for mtk_alloc_clk_data Add the check for the return value of mtk_alloc_clk_data() in order to avoid NULL pointer dereference. | ||||
CVE-2023-52770 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: f2fs: split initial and dynamic conditions for extent_cache Let's allocate the extent_cache tree without dynamic conditions to avoid a missing condition causing a panic as below. # create a file w/ a compressed flag # disable the compression # panic while updating extent_cache F2FS-fs (dm-64): Swapfile: last extent is not aligned to section F2FS-fs (dm-64): Swapfile (3) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(2097152 * N) Adding 124996k swap on ./swap-file. Priority:0 extents:2 across:17179494468k ================================================================== BUG: KASAN: null-ptr-deref in instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline] BUG: KASAN: null-ptr-deref in atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline] BUG: KASAN: null-ptr-deref in queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline] BUG: KASAN: null-ptr-deref in __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline] BUG: KASAN: null-ptr-deref in _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295 Write of size 4 at addr 0000000000000030 by task syz-executor154/3327 CPU: 0 PID: 3327 Comm: syz-executor154 Tainted: G O 5.10.185 #1 Hardware name: emulation qemu-x86/qemu-x86, BIOS 2023.01-21885-gb3cc1cd24d 01/01/2023 Call Trace: __dump_stack out/common/lib/dump_stack.c:77 [inline] dump_stack_lvl+0x17e/0x1c4 out/common/lib/dump_stack.c:118 __kasan_report+0x16c/0x260 out/common/mm/kasan/report.c:415 kasan_report+0x51/0x70 out/common/mm/kasan/report.c:428 kasan_check_range+0x2f3/0x340 out/common/mm/kasan/generic.c:186 __kasan_check_write+0x14/0x20 out/common/mm/kasan/shadow.c:37 instrument_atomic_read_write out/common/include/linux/instrumented.h:101 [inline] atomic_try_cmpxchg_acquire out/common/include/asm-generic/atomic-instrumented.h:705 [inline] queued_write_lock out/common/include/asm-generic/qrwlock.h:92 [inline] __raw_write_lock out/common/include/linux/rwlock_api_smp.h:211 [inline] _raw_write_lock+0x5a/0x110 out/common/kernel/locking/spinlock.c:295 __drop_extent_tree+0xdf/0x2f0 out/common/fs/f2fs/extent_cache.c:1155 f2fs_drop_extent_tree+0x17/0x30 out/common/fs/f2fs/extent_cache.c:1172 f2fs_insert_range out/common/fs/f2fs/file.c:1600 [inline] f2fs_fallocate+0x19fd/0x1f40 out/common/fs/f2fs/file.c:1764 vfs_fallocate+0x514/0x9b0 out/common/fs/open.c:310 ksys_fallocate out/common/fs/open.c:333 [inline] __do_sys_fallocate out/common/fs/open.c:341 [inline] __se_sys_fallocate out/common/fs/open.c:339 [inline] __x64_sys_fallocate+0xb8/0x100 out/common/fs/open.c:339 do_syscall_64+0x35/0x50 out/common/arch/x86/entry/common.c:46 | ||||
CVE-2023-52767 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 5.5 Medium |
In the Linux kernel, the following vulnerability has been resolved: tls: fix NULL deref on tls_sw_splice_eof() with empty record syzkaller discovered that if tls_sw_splice_eof() is executed as part of sendfile() when the plaintext/ciphertext sk_msg are empty, the send path gets confused because the empty ciphertext buffer does not have enough space for the encryption overhead. This causes tls_push_record() to go on the `split = true` path (which is only supposed to be used when interacting with an attached BPF program), and then get further confused and hit the tls_merge_open_record() path, which then assumes that there must be at least one populated buffer element, leading to a NULL deref. It is possible to have empty plaintext/ciphertext buffers if we previously bailed from tls_sw_sendmsg_locked() via the tls_trim_both_msgs() path. tls_sw_push_pending_record() already handles this case correctly; let's do the same check in tls_sw_splice_eof(). | ||||
CVE-2023-52757 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix potential deadlock when releasing mids All release_mid() callers seem to hold a reference of @mid so there is no need to call kref_put(&mid->refcount, __release_mid) under @server->mid_lock spinlock. If they don't, then an use-after-free bug would have occurred anyways. By getting rid of such spinlock also fixes a potential deadlock as shown below CPU 0 CPU 1 ------------------------------------------------------------------ cifs_demultiplex_thread() cifs_debug_data_proc_show() release_mid() spin_lock(&server->mid_lock); spin_lock(&cifs_tcp_ses_lock) spin_lock(&server->mid_lock) __release_mid() smb2_find_smb_tcon() spin_lock(&cifs_tcp_ses_lock) *deadlock* | ||||
CVE-2023-52751 | 2 Linux, Redhat | 2 Linux Kernel, Enterprise Linux | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: smb: client: fix use-after-free in smb2_query_info_compound() The following UAF was triggered when running fstests generic/072 with KASAN enabled against Windows Server 2022 and mount options 'multichannel,max_channels=2,vers=3.1.1,mfsymlinks,noperm' BUG: KASAN: slab-use-after-free in smb2_query_info_compound+0x423/0x6d0 [cifs] Read of size 8 at addr ffff888014941048 by task xfs_io/27534 CPU: 0 PID: 27534 Comm: xfs_io Not tainted 6.6.0-rc7 #1 Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.2-3-gd478f380-rebuilt.opensuse.org 04/01/2014 Call Trace: dump_stack_lvl+0x4a/0x80 print_report+0xcf/0x650 ? srso_alias_return_thunk+0x5/0x7f ? srso_alias_return_thunk+0x5/0x7f ? __phys_addr+0x46/0x90 kasan_report+0xda/0x110 ? smb2_query_info_compound+0x423/0x6d0 [cifs] ? smb2_query_info_compound+0x423/0x6d0 [cifs] smb2_query_info_compound+0x423/0x6d0 [cifs] ? __pfx_smb2_query_info_compound+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __stack_depot_save+0x39/0x480 ? kasan_save_stack+0x33/0x60 ? kasan_set_track+0x25/0x30 ? ____kasan_slab_free+0x126/0x170 smb2_queryfs+0xc2/0x2c0 [cifs] ? __pfx_smb2_queryfs+0x10/0x10 [cifs] ? __pfx___lock_acquire+0x10/0x10 smb311_queryfs+0x210/0x220 [cifs] ? __pfx_smb311_queryfs+0x10/0x10 [cifs] ? srso_alias_return_thunk+0x5/0x7f ? __lock_acquire+0x480/0x26c0 ? lock_release+0x1ed/0x640 ? srso_alias_return_thunk+0x5/0x7f ? do_raw_spin_unlock+0x9b/0x100 cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 ? __pfx___do_sys_fstatfs+0x10/0x10 ? srso_alias_return_thunk+0x5/0x7f ? lockdep_hardirqs_on_prepare+0x136/0x200 ? srso_alias_return_thunk+0x5/0x7f do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Allocated by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 __kasan_kmalloc+0x8f/0xa0 open_cached_dir+0x71b/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] smb311_queryfs+0x210/0x220 [cifs] cifs_statfs+0x18c/0x4b0 [cifs] statfs_by_dentry+0x9b/0xf0 fd_statfs+0x4e/0xb0 __do_sys_fstatfs+0x7f/0xe0 do_syscall_64+0x3f/0x90 entry_SYSCALL_64_after_hwframe+0x6e/0xd8 Freed by task 27534: kasan_save_stack+0x33/0x60 kasan_set_track+0x25/0x30 kasan_save_free_info+0x2b/0x50 ____kasan_slab_free+0x126/0x170 slab_free_freelist_hook+0xd0/0x1e0 __kmem_cache_free+0x9d/0x1b0 open_cached_dir+0xff5/0x1240 [cifs] smb2_query_info_compound+0x5c3/0x6d0 [cifs] smb2_queryfs+0xc2/0x2c0 [cifs] This is a race between open_cached_dir() and cached_dir_lease_break() where the cache entry for the open directory handle receives a lease break while creating it. And before returning from open_cached_dir(), we put the last reference of the new @cfid because of !@cfid->has_lease. Besides the UAF, while running xfstests a lot of missed lease breaks have been noticed in tests that run several concurrent statfs(2) calls on those cached fids CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 00000000715bfe83 len 108 CIFS: VFS: Dump pending requests: CIFS: VFS: \\w22-root1.gandalf.test No task to wake, unknown frame... CIFS: VFS: \\w22-root1.gandalf.test Cmd: 18 Err: 0x0 Flags: 0x1... CIFS: VFS: \\w22-root1.gandalf.test smb buf 000000005aa7316e len 108 ... To fix both, in open_cached_dir() ensure that @cfid->has_lease is set right before sending out compounded request so that any potential lease break will be get processed by demultiplex thread while we're still caching @cfid. And, if open failed for some reason, re-check @cfid->has_lease to decide whether or not put lease reference. | ||||
CVE-2023-33847 | 3 Hp, Ibm, Linux | 5 Hp-ux, Aix, Cics Tx and 2 more | 2025-01-06 | 3.7 Low |
IBM TXSeries for Multiplatforms 8.1, 8.2, 9.1, CICS TX Standard, 11.1, CICS TX Advanced 10.1, and 11.1 does not set the secure attribute on authorization tokens or session cookies. Attackers may be able to get the cookie values by sending a http:// link to a user or by planting this link in a site the user goes to. The cookie will be sent to the insecure link and the attacker can then obtain the cookie value by snooping the traffic. IBM X-Force ID: 257102. | ||||
CVE-2023-33846 | 3 Hp, Ibm, Linux | 5 Hp-ux, Aix, Cics Tx and 2 more | 2025-01-06 | 5.4 Medium |
IBM TXSeries for Multiplatforms 8.1, 8.2, 9.1, CICS TX Standard, 11.1, CICS TX Advanced 10.1, and 11.1 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 257100. | ||||
CVE-2023-23482 | 2 Ibm, Linux | 2 Sterling Partner Engagement Manager, Linux Kernel | 2025-01-06 | 5.4 Medium |
IBM Sterling Partner Engagement Manager 6.1, 6.2, and 6.2.1 could allow a remote attacker to hijack the clicking action of the victim. By persuading a victim to visit a malicious Web site, a remote attacker could exploit this vulnerability to hijack the victim's click actions and possibly launch further attacks against the victim. IBM X-Force ID: 245891. | ||||
CVE-2023-33848 | 3 Hp, Ibm, Linux | 5 Hp-ux, Aix, Cics Tx and 2 more | 2025-01-06 | 4.9 Medium |
IBM TXSeries for Multiplatforms 8.1, 8.2, 9.1, CICS TX Standard, 11.1, CICS TX Advanced 10.1, and 11.1 could allow a privileged user to obtain highly sensitive information by enabling debug mode. IBM X-Force ID: 257104. | ||||
CVE-2023-23481 | 2 Ibm, Linux | 2 Sterling Partner Engagement Manager, Linux Kernel | 2025-01-06 | 6.4 Medium |
IBM Sterling Partner Engagement Manager 6.1, 6.2, and 6.2.1 is vulnerable to stored cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 245889. | ||||
CVE-2021-47489 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: Fix even more out of bound writes from debugfs CVE-2021-42327 was fixed by: commit f23750b5b3d98653b31d4469592935ef6364ad67 Author: Thelford Williams <tdwilliamsiv@gmail.com> Date: Wed Oct 13 16:04:13 2021 -0400 drm/amdgpu: fix out of bounds write but amdgpu_dm_debugfs.c contains more of the same issue so fix the remaining ones. v2: * Add missing fix in dp_max_bpc_write (Harry Wentland) | ||||
CVE-2021-47485 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: IB/qib: Protect from buffer overflow in struct qib_user_sdma_pkt fields Overflowing either addrlimit or bytes_togo can allow userspace to trigger a buffer overflow of kernel memory. Check for overflows in all the places doing math on user controlled buffers. | ||||
CVE-2021-47483 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: regmap: Fix possible double-free in regcache_rbtree_exit() In regcache_rbtree_insert_to_block(), when 'present' realloc failed, the 'blk' which is supposed to assign to 'rbnode->block' will be freed, so 'rbnode->block' points a freed memory, in the error handling path of regcache_rbtree_init(), 'rbnode->block' will be freed again in regcache_rbtree_exit(), KASAN will report double-free as follows: BUG: KASAN: double-free or invalid-free in kfree+0xce/0x390 Call Trace: slab_free_freelist_hook+0x10d/0x240 kfree+0xce/0x390 regcache_rbtree_exit+0x15d/0x1a0 regcache_rbtree_init+0x224/0x2c0 regcache_init+0x88d/0x1310 __regmap_init+0x3151/0x4a80 __devm_regmap_init+0x7d/0x100 madera_spi_probe+0x10f/0x333 [madera_spi] spi_probe+0x183/0x210 really_probe+0x285/0xc30 To fix this, moving up the assignment of rbnode->block to immediately after the reallocation has succeeded so that the data structure stays valid even if the second reallocation fails. | ||||
CVE-2023-23480 | 2 Ibm, Linux | 2 Sterling Partner Engagement Manager, Linux Kernel | 2025-01-06 | 5.4 Medium |
IBM Sterling Partner Engagement Manager 6.1, 6.2, and 6.2.1 is vulnerable to cross-site scripting. This vulnerability allows users to embed arbitrary JavaScript code in the Web UI thus altering the intended functionality potentially leading to credentials disclosure within a trusted session. IBM X-Force ID: 245885. | ||||
CVE-2024-50106 | 1 Linux | 1 Linux Kernel | 2025-01-06 | 7.8 High |
In the Linux kernel, the following vulnerability has been resolved: nfsd: fix race between laundromat and free_stateid There is a race between laundromat handling of revoked delegations and a client sending free_stateid operation. Laundromat thread finds that delegation has expired and needs to be revoked so it marks the delegation stid revoked and it puts it on a reaper list but then it unlock the state lock and the actual delegation revocation happens without the lock. Once the stid is marked revoked a racing free_stateid processing thread does the following (1) it calls list_del_init() which removes it from the reaper list and (2) frees the delegation stid structure. The laundromat thread ends up not calling the revoke_delegation() function for this particular delegation but that means it will no release the lock lease that exists on the file. Now, a new open for this file comes in and ends up finding that lease list isn't empty and calls nfsd_breaker_owns_lease() which ends up trying to derefence a freed delegation stateid. Leading to the followint use-after-free KASAN warning: kernel: ================================================================== kernel: BUG: KASAN: slab-use-after-free in nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: Read of size 8 at addr ffff0000e73cd0c8 by task nfsd/6205 kernel: kernel: CPU: 2 UID: 0 PID: 6205 Comm: nfsd Kdump: loaded Not tainted 6.11.0-rc7+ #9 kernel: Hardware name: Apple Inc. Apple Virtualization Generic Platform, BIOS 2069.0.0.0.0 08/03/2024 kernel: Call trace: kernel: dump_backtrace+0x98/0x120 kernel: show_stack+0x1c/0x30 kernel: dump_stack_lvl+0x80/0xe8 kernel: print_address_description.constprop.0+0x84/0x390 kernel: print_report+0xa4/0x268 kernel: kasan_report+0xb4/0xf8 kernel: __asan_report_load8_noabort+0x1c/0x28 kernel: nfsd_breaker_owns_lease+0x140/0x160 [nfsd] kernel: nfsd_file_do_acquire+0xb3c/0x11d0 [nfsd] kernel: nfsd_file_acquire_opened+0x84/0x110 [nfsd] kernel: nfs4_get_vfs_file+0x634/0x958 [nfsd] kernel: nfsd4_process_open2+0xa40/0x1a40 [nfsd] kernel: nfsd4_open+0xa08/0xe80 [nfsd] kernel: nfsd4_proc_compound+0xb8c/0x2130 [nfsd] kernel: nfsd_dispatch+0x22c/0x718 [nfsd] kernel: svc_process_common+0x8e8/0x1960 [sunrpc] kernel: svc_process+0x3d4/0x7e0 [sunrpc] kernel: svc_handle_xprt+0x828/0xe10 [sunrpc] kernel: svc_recv+0x2cc/0x6a8 [sunrpc] kernel: nfsd+0x270/0x400 [nfsd] kernel: kthread+0x288/0x310 kernel: ret_from_fork+0x10/0x20 This patch proposes a fixed that's based on adding 2 new additional stid's sc_status values that help coordinate between the laundromat and other operations (nfsd4_free_stateid() and nfsd4_delegreturn()). First to make sure, that once the stid is marked revoked, it is not removed by the nfsd4_free_stateid(), the laundromat take a reference on the stateid. Then, coordinating whether the stid has been put on the cl_revoked list or we are processing FREE_STATEID and need to make sure to remove it from the list, each check that state and act accordingly. If laundromat has added to the cl_revoke list before the arrival of FREE_STATEID, then nfsd4_free_stateid() knows to remove it from the list. If nfsd4_free_stateid() finds that operations arrived before laundromat has placed it on cl_revoke list, it marks the state freed and then laundromat will no longer add it to the list. Also, for nfsd4_delegreturn() when looking for the specified stid, we need to access stid that are marked removed or freeable, it means the laundromat has started processing it but hasn't finished and this delegreturn needs to return nfserr_deleg_revoked and not nfserr_bad_stateid. The latter will not trigger a FREE_STATEID and the lack of it will leave this stid on the cl_revoked list indefinitely. |