Total
82 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2024-2408 | 3 Fedoraproject, Php, Redhat | 3 Fedora, Php, Enterprise Linux | 2025-03-21 | 5.9 Medium |
The openssl_private_decrypt function in PHP, when using PKCS1 padding (OPENSSL_PKCS1_PADDING, which is the default), is vulnerable to the Marvin Attack unless it is used with an OpenSSL version that includes the changes from this pull request: https://github.com/openssl/openssl/pull/13817 (rsa_pkcs1_implicit_rejection). These changes are part of OpenSSL 3.2 and have also been backported to stable versions of various Linux distributions, as well as to the PHP builds provided for Windows since the previous release. All distributors and builders should ensure that this version is used to prevent PHP from being vulnerable. PHP Windows builds for the versions 8.1.29, 8.2.20 and 8.3.8 and above include OpenSSL patches that fix the vulnerability. | ||||
CVE-2025-30344 | 2025-03-21 | 5.3 Medium | ||
An issue was discovered in OpenSlides before 4.2.5. During login at the /system/auth/login/ endpoint, the system's response times differ depending on whether a user exists in the system. The timing discrepancy stems from the omitted hashing of the password (e.g., more than 100 milliseconds). | ||||
CVE-2025-29780 | 2025-03-19 | N/A | ||
Post-Quantum Secure Feldman's Verifiable Secret Sharing provides a Python implementation of Feldman's Verifiable Secret Sharing (VSS) scheme. In versions 0.8.0b2 and prior, the `feldman_vss` library contains timing side-channel vulnerabilities in its matrix operations, specifically within the `_find_secure_pivot` function and potentially other parts of `_secure_matrix_solve`. These vulnerabilities are due to Python's execution model, which does not guarantee constant-time execution. An attacker with the ability to measure the execution time of these functions (e.g., through repeated calls with carefully crafted inputs) could potentially recover secret information used in the Verifiable Secret Sharing (VSS) scheme. The `_find_secure_pivot` function, used during Gaussian elimination in `_secure_matrix_solve`, attempts to find a non-zero pivot element. However, the conditional statement `if matrix[row][col] != 0 and row_random < min_value:` has execution time that depends on the value of `matrix[row][col]`. This timing difference can be exploited by an attacker. The `constant_time_compare` function in this file also does not provide a constant-time guarantee. The Python implementation of matrix operations in the _find_secure_pivot and _secure_matrix_solve functions cannot guarantee constant-time execution, potentially leaking information about secret polynomial coefficients. An attacker with the ability to make precise timing measurements of these operations could potentially extract secret information through statistical analysis of execution times, though practical exploitation would require significant expertise and controlled execution environments. Successful exploitation of these timing side-channels could allow an attacker to recover secret keys or other sensitive information protected by the VSS scheme. This could lead to a complete compromise of the shared secret. As of time of publication, no patched versions of Post-Quantum Secure Feldman's Verifiable Secret Sharing exist, but other mitigations are available. As acknowledged in the library's documentation, these vulnerabilities cannot be adequately addressed in pure Python. In the short term, consider using this library only in environments where timing measurements by attackers are infeasible. In the medium term, implement your own wrappers around critical operations using constant-time libraries in languages like Rust, Go, or C. In the long term, wait for the planned Rust implementation mentioned in the library documentation that will properly address these issues. | ||||
CVE-2024-2467 | 1 Redhat | 2 Enterprise Linux, Openssl | 2025-03-15 | 5.9 Medium |
A timing-based side-channel flaw exists in the perl-Crypt-OpenSSL-RSA package, which could be sufficient to recover plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode. | ||||
CVE-2024-23953 | 2025-03-14 | 6.5 Medium | ||
Use of Arrays.equals() in LlapSignerImpl in Apache Hive to compare message signatures allows attacker to forge a valid signature for an arbitrary message byte by byte. The attacker should be an authorized user of the product to perform this attack. Users are recommended to upgrade to version 4.0.0, which fixes this issue. The problem occurs when an application doesn’t use a constant-time algorithm for validating a signature. The method Arrays.equals() returns false right away when it sees that one of the input’s bytes are different. It means that the comparison time depends on the contents of the arrays. This little thing may allow an attacker to forge a valid signature for an arbitrary message byte by byte. So it might allow malicious users to submit splits/work with selected signatures to LLAP without running as a privileged user, potentially leading to DDoS attack. More details in the reference section. | ||||
CVE-2024-22340 | 1 Ibm | 1 4769 | 2025-03-11 | 6.5 Medium |
IBM Common Cryptographic Architecture 7.0.0 through 7.5.51 could allow a remote attacker to obtain sensitive information during the creation of ECDSA signatures to perform a timing-based attack. | ||||
CVE-2023-25806 | 1 Amazon | 2 Opensearch, Opensearch Security | 2025-03-05 | 5.3 Medium |
OpenSearch Security is a plugin for OpenSearch that offers encryption, authentication and authorization. There is an observable discrepancy in the authentication response time between calls where the user provided exists and calls where it does not. This issue only affects calls using the internal basic identity provider (IdP), and not other externally configured IdPs. Patches were released in versions 1.3.9 and 2.6.0, there are no workarounds. | ||||
CVE-2022-25332 | 1 Ti | 2 Omap L138, Omap L138 Firmware | 2025-02-27 | 4.4 Medium |
The AES implementation in the Texas Instruments OMAP L138 (secure variants), present in mask ROM, suffers from a timing side channel which can be exploited by an adversary with non-secure supervisor privileges by managing cache contents and collecting timing information for different ciphertext inputs. Using this side channel, the SK_LOAD secure kernel routine can be used to recover the Customer Encryption Key (CEK). | ||||
CVE-2023-1538 | 1 Answer | 1 Answer | 2025-02-27 | 5.3 Medium |
Observable Timing Discrepancy in GitHub repository answerdev/answer prior to 1.0.6. | ||||
CVE-2024-54772 | 2025-02-24 | 5.4 Medium | ||
An issue was discovered in the Winbox service of MikroTik RouterOS long-term release v6.43.13 through v6.49.13 and stable v6.43 through v7.17.2. A patch is available in the stable release v6.49.18. A discrepancy in response size between connection attempts made with a valid username and those with an invalid username allows attackers to enumerate for valid accounts. | ||||
CVE-2023-5388 | 1 Redhat | 5 Enterprise Linux, Rhel Aus, Rhel E4s and 2 more | 2025-02-13 | 6.5 Medium |
NSS was susceptible to a timing side-channel attack when performing RSA decryption. This attack could potentially allow an attacker to recover the private data. This vulnerability affects Firefox < 124, Firefox ESR < 115.9, and Thunderbird < 115.9. | ||||
CVE-2023-41313 | 1 Apache | 1 Doris | 2025-02-13 | 9.8 Critical |
The authentication method in Apache Doris versions before 2.0.0 was vulnerable to timing attacks. Users are recommended to upgrade to version 2.0.0 + or 1.2.8, which fixes this issue. | ||||
CVE-2023-45287 | 2 Golang, Redhat | 11 Go, Enterprise Linux, Migration Toolkit Applications and 8 more | 2025-02-13 | 7.5 High |
Before Go 1.20, the RSA based TLS key exchanges used the math/big library, which is not constant time. RSA blinding was applied to prevent timing attacks, but analysis shows this may not have been fully effective. In particular it appears as if the removal of PKCS#1 padding may leak timing information, which in turn could be used to recover session key bits. In Go 1.20, the crypto/tls library switched to a fully constant time RSA implementation, which we do not believe exhibits any timing side channels. | ||||
CVE-2023-25000 | 2 Hashicorp, Redhat | 3 Vault, Openshift, Openshift Data Foundation | 2025-02-13 | 5 Medium |
HashiCorp Vault's implementation of Shamir's secret sharing used precomputed table lookups, and was vulnerable to cache-timing attacks. An attacker with access to, and the ability to observe a large number of unseal operations on the host through a side channel may reduce the search space of a brute force effort to recover the Shamir shares. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9. | ||||
CVE-2020-1926 | 1 Apache | 1 Hive | 2025-02-13 | 5.9 Medium |
Apache Hive cookie signature verification used a non constant time comparison which is known to be vulnerable to timing attacks. This could allow recovery of another users cookie signature. The issue was addressed in Apache Hive 2.3.8 | ||||
CVE-2019-16782 | 4 Fedoraproject, Opensuse, Rack and 1 more | 6 Fedora, Leap, Rack and 3 more | 2025-02-13 | 6.3 Medium |
There's a possible information leak / session hijack vulnerability in Rack (RubyGem rack). This vulnerability is patched in versions 1.6.12 and 2.0.8. Attackers may be able to find and hijack sessions by using timing attacks targeting the session id. Session ids are usually stored and indexed in a database that uses some kind of scheme for speeding up lookups of that session id. By carefully measuring the amount of time it takes to look up a session, an attacker may be able to find a valid session id and hijack the session. The session id itself may be generated randomly, but the way the session is indexed by the backing store does not use a secure comparison. | ||||
CVE-2024-42512 | 2025-02-11 | 8.6 High | ||
Vulnerability in the OPC UA .NET Standard Stack before 1.5.374.158 allows an unauthorized attacker to bypass application authentication when the deprecated Basic128Rsa15 security policy is enabled. | ||||
CVE-2024-3296 | 1 Redhat | 1 Enterprise Linux | 2025-02-07 | 5.9 Medium |
A timing-based side-channel flaw exists in the rust-openssl package, which could be sufficient to recover a plaintext across a network in a Bleichenbacher-style attack. To achieve successful decryption, an attacker would have to be able to send a large number of trial messages for decryption. The vulnerability affects the legacy PKCS#1v1.5 RSA encryption padding mode. | ||||
CVE-2023-50781 | 2 M2crypto Project, Redhat | 5 M2crypto, Enterprise Linux, Rhev Hypervisor and 2 more | 2025-02-07 | 7.5 High |
A flaw was found in m2crypto. This issue may allow a remote attacker to decrypt captured messages in TLS servers that use RSA key exchanges, which may lead to exposure of confidential or sensitive data. | ||||
CVE-2020-35165 | 1 Dell | 2 Bsafe Crypto-c-micro-edition, Bsafe Micro-edition-suite | 2025-02-06 | 5.1 Medium |
Dell BSAFE Crypto-C Micro Edition, versions before 4.1.5, and Dell BSAFE Micro Edition Suite, versions before 4.6, contain an Observable Timing Discrepancy Vulnerability. |